

FACULTAD DE INGENIERÍA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Gilberto Sotelo Avila

APUNTES DE HIDRÁULICA II

				*
				•
		,		
			•	

INDICE

								rayın
			Página		4.	SALT	O HIDRAULICO	130
1.	ASPI	ECTOS GENERALES	1			4.1	Aspectos generales	130
	1.1	Características generales del flujo en un canal	1			4.2	La función "momentum"	135
	1.2	Tipos de flujo	2			4.3	Longitud del salto	138
	1.3	Geometría de las Secciones	_			4.4		
	1.4	Ecuaciones para flujo unidimensional permanente 1.4.1 Ecuación de continuidad	7 8				sección	139 139 140
		1.4.3 Ecuación de energia	9 9 10				4.4.3 Sección trapecial	141 146
	1.5	Distribución de velocidades en la sección de un canal	11				4.4.5 Sección herradura	149 153
	1.6	Distribución de presiones en una sección	14				después del salto	153
			' -			4.5	Compuerta con descarga sumergida	171
2.	FLUJ	O UNIFORME	26			4.6	Salto en canales rectangulares con pendiente	178
	2.1	Introducción	26					
	2.2	Fórmula de Chezy	28		5.	FLUJ	O VARIADO	182
	2.3	Flujo laminar a superficie libre	30			5.1	Ecuación dinámica	182
	2.4 2.5	Flujo turbulento a superficie libre	32			5.2	Características y clasificación de los perfiles de flujo	185
	,	lento	43			5.3	Sección de control	191
	2.6	La fórmula de Manning - Strickler	43			5.4	Sintesis de perfiles compuestos	195
	2.7	Cálculo del flujo uniforme	53			5.5		202
	2.8	Canales de sección compuesta	56				5.5.1 Integración gráfica	202 208
		Conductos cerrados parcialmente llenos Diseño de la sección más conveniente	67 . 72			5.6	Métodos de incrementos finitos en canales prismáticos	219
		2.10.1 Planteo del problema 2.10.2 Canales revestidos 2.10.3 Canales no revestidos	72 73 87				5.6.1 Método para el cálculo de la longitud del tramo	219 235
١.	ENER	GIA ESPECIFICA Y REGIMEN CRITICO	101	•		5.7	Método de incrementos finitos en canales naturales	
		Introducción					5.7.1 Ríos de sección amarilla	253
	3.2	Energía específica	101				5.7.2 Ríos de sección compuesta	260 274
	3.3	Regimen crítico	103 110				5.7.4 Método de Escoffier	277 278
		3.3.2 Condición para gasto máximo (Fa constanta)	110 111			5.8	Capacidad de conducción de un canal	279
		3.3.4 Pendiente crítica	115 120		6.		NSICIONES EN CANALES	289
		3.3.4 Velocidad crítica y velocidad de la onda	127			6.1	Introducción	289
						6.2	Aforadores	291

6.3	Expansiones y contracciones	302
	6.3.2 Cambios de sección en régimen subcrítico 6.3.3 Cambios de sección en régimen supercrítico	302 302 303 330
6.4	Cambios de dirección horizontal 6.4.1 Aspectos generales 6.4.2 Curvas en régimen subcrítico 6.4.3 Curvas en régimen supercrítico 6.4.4 Teoría del gasto unitario constante	360 360 363 382 396
6.5	Cambios de dirección vertical	403
6.6	Obstrucciones 6.6.1 Aspectos generales 6.6.2 Umbrales de fondo 6.6.3 Pilas de puente 6.6.4 Hilera de pilas cilíndricas 6.6.5 Rejillas	408 408 409 411 427 427
6.7	Bifurcaciones 6.7.1 Aspectos generales 6.7.2 Comportamiento general 6.7.3 Pérdidas de energía	428 428 428 432
FLUJC	ESPECIALMENTE VARIADO	441
7.1	Aspectos generales	441
	Flujo de gasto creciente	443 443 446
	Flujo con gasto decreciente 7.3.1 Aspectos generales 7.3.2 Ecuación dinámica 7.3.3 Análisis de los perfiles de flujo 7.3.4 Integración numérica 7.3.5 El vertedor lateral 7.3.6 Flujo sobre una reja de fondo	451 473 473 474 475 477 478 494

APUNTES DE

HIDRAULICA II

Gilberto Sotelo Avila

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA DIVISION DE INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA DEPARTAMENTO DE HIDRAULICA

CAPITULO I. ASPECTOS GENERALES

1.1 Características generales del flujo en un canal

El flujo de un fluido en un canal se caracteriza por la exposición de una superficie libre a la presión atmosférica. Por esta razón, el fluido respectivo es siempre-un líquido, casi siempre agua.

Los problemas conectados con el flujo en canales representan una alta — proporción del trabajo del ingeniero hidráulico y la aparente simplicidad resultante de la superficie libre es irreal debido al incremento en la complejidad de dicho flujo en comparación con el de un conducto a presión. El agua que fluye en un canal se ve afectada — por todas las fuerzas que intervienen en el flujo dentro de un tubo, con la adición de lasfuerzas de gravedad y de tensión superficial que son la consecuencia directa de la superficie libre. En realidad la superficie libre se debe considerar como una intercara entre dos fluidos, el superior un gas usualmente estacionario (o en movimiento) y el inferior un lí—quido en movimiento. Las fuerzas de gravedad y tensión superficial resistirán cualquier —

fuerza tendiente a distorsionar esta intercara, la cual siempre constituirá una frontera sobre la cual el ingeniero tiene un control parcial.

De acuerdo con su origen, un canal puede ser natural o artificial. Dentro de los primeros se incluyen todos los cursos de agua que existen en forma natural sobre la tierra, tales como arroyos, ríos, etc. Dentro de los canales artificiales se incluyen todos los construídos por el hombre, tales como canales de navegación, canales de fuerza, canales de riego, obras de excedencias, etc.

Si el canal se construye con una sección transversal y pendiente de plantilla constante, se denomina <u>canal prismático</u>. De no satisfacerse estas condiciones, elcanal es no prismático, como es el caso de los canales naturales.

Si el canal es natural (y en algunos casos artificial), se presenta una -nueva dificultad cuando el escurrimiento se relaciona con el transporte de sedimentos; es
decir, cuando el río, en su recorrido de-las montañas al valle, lleva consigo cuerpos sóli
dos más o menos grandes (arena, grava y hasta grandes piedras) que modifican constantemente la forma de las fronteras sólidas e impiden una definición todavía más exacta de la
rugosidad de la pared. Este escurrimiento tan complejo se estudia con detenimiento en la
hidráulica fluvial que, por si sola, forma una disciplina fuera de los alcances de este libro, en cuyo contenido se supondrá que en los canales no cambia la forma de su frontera.

1.2 Tipos de flujo

La clasificación del flujo en un canal sigue las formas generales indicadas en el capítulo 3 del Vol. 1 con la adición del espacio como un criterio más, teniendo principalmente interés los tipos de flujo, que se indican a continuación, sobre la base de que en todos los casos el flujo es unidimensional.

a) Flujo permanente y no permanente. Esta clasificación obedece a la uti

lización del tiempo como un criterio. El flujo es permanente si el tirante permanece constante en cualquier instante o en un lapso especificado. Lo contrario acontece si el flujo esno permanente. El caso más común de flujo permanente es aquel de un canal en que el gasto es constante en cualquier sección transversal del mismo; otros casos de flujo permanente ocurren cuando existen aportes o salidas de agua (que no varían con el tiempo) a lo largo de todo el canal o en tramos del mismo; por ejemplo, los vertedores de canal lateral, las cunetas y bordillos en carreteras y los sistemas de drenaje en zonas de riego. El caso más común de flujo no permanente se presenta en los canales donde transita una onda de traslación o — una avenida.

b) Flujo uniforme y variado. Esta clasificación obedece a la utilización delespacio como un criterio.

El flujo uniforme se presenta cuando la velocidad media permanece cons—tante en cualquier sección del canal. Con una superficie libre, esto implica que la sección-transversal y el tirante permanecen también constantes (fig 1.1). Como consecuencia de ladefinición, en flujo uniforme la pendiente Sf de la línea de energía de fricción, la pendiente Sa de la superficie libre del agua y la pendiente geométrica So del canal son iguales: — Sf = Sa = So = S. El hecho de que la velocidad media permanezca constante, se refiere estrica tamente al hecho de que el flujo posea una velocidad constante en cada punto de la sección transversal a lo largo del canal; es decir, que la distribución de velocidades de cada sección se altera. El tirante correspondiente al flujo uniforme se conoce como tirante normal.

Las características de un flujo uniforme se pueden satisfacer únicamente — si el canal es prismático, esto es, el flujo uniforme solo puede ocurrir en canales artificiales, pero no en los naturales. Si la velocidad se incrementa a valores muy grandes (más de — 6m/seg), se produce arrastre de aire adquiriendo el flujo un carácter no permanente y pulsatorio, por lo cual un flujo muy rápido no puede ser uniforme. Incidentalmente, a velocidades excepcionales (aproximadamente 30m/seg) el incremento de área hidráulica por el aire-

arrastrado llega a ser hasta de un 50 por ciento.

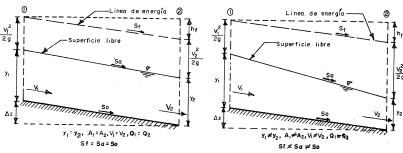


Fig 1.1 Flujo Uniforme

Fig 1.2 Flujo variado permanente

Teóricamente es posible que un flujo uniforme pueda ser permanente o no permanente. En el flujo uniforme permanente el tirante no cambia con el tiempo y es el tipo fundamental del flujo tratado en la hidráulica de canales. El flujo uniforme no permanente requeriría que la superficie libre fluctuara de un instante a otro pero siempre permaneciendo paralela a la plantilla del canal, lo cual obviamente es difícil que ocurra en la práctica. Por lo mismo, el flujo uniforme es casi siempre permanente.

El flujo es variado si la velocidad media cambia a lo largo del canal y, por lo mismo, posee características opuestas a las del flujo uniforme, tal como se muestra en la fig. 1.2. Los cambios de velocidad se pueden producir por una variación en la sección del canal, por un cambio en la pendiente o por una estructura hidráulica tal como un vertedor o compuerta interpuesta en la línea de flujo. Debido a estos efectos, el flujo uniforme es un estado ideal que dificilmente se logra. Sin embargo, en la mayoría de los casos (y sobre todo en canales rectos y largos de sección transversal y pendiente de plantilla constante), se alcanza un flujo casi uniforme, de tal manera que la suposición es razonable especialmente porque simplifica el análisis.

El flujo variado si puede ser permanente y no permanente y toda vez que no existe flujo no permanente uniforme, el no permanente tiene que ser necesariamente - variado.

El flujo variado se puede a su vez clasificar en gradual, rápida y espacialmente variado. El flujo gradualmente variado es aquel en que el tirante cambia en forma gradual a lo largo del canal. En el flujo rápidamente variado acontece lo contrario, como es el caso del salto hidráulico. En el flujo espacialmente variado cambian además las características hidráulicas a lo largo del canal o de un tramo del mismo. En resumen, la clasificación es como sigue:

$$\begin{cases} \text{uniforme} \\ \\ \text{variado} \end{cases} \begin{cases} \text{gradualmente} \\ \text{rápidamente} \\ \\ \text{espacialmente} \end{cases}$$

$$\begin{cases} \text{gradualmente} \\ \text{flujo no permanente variado} \end{cases} \begin{cases} \text{gradualmente} \\ \text{rápidamente} \end{cases}$$

El tratamiento de los problemas que se presentan en la primera parte deeste libro corresponde únicamente a flujos permanentes.

c) Flujo laminar y turbulento. El comportamiento del flujo en un canal — está gobernado principalmente por los efectos de las fuerzas viscosas y de gravedad con – relación a las fuerzas de inercia internas del flujo. La tensión superficial del agua sobre la superficie puede afectar el comportamiento del flujo en el caso de tirante o secciones – transversales pequeñas, pero no juega un papel importante en la mayoría de los problemas de canales. Con relación al efecto de la viscosidad, el flujo puede ser laminar, de tran

sición o turbulento en forma semejante al flujo en conductos forzados y la importancia de la fuerza viscosa se mide a través del número de Reynolds definido en este caso como

$$R_{e} = \frac{V R_{h}}{V} \tag{1.1}$$

donde

radio hidráulico de la sección, en m

V velocidad media en la misma, en m/seg

viscosidad cinemática del agua, en m/seg²

En los canales se han comprobado resultados semejantes a los de los tu—bos por lo que respecta a este criterio de clasificación. Para propósitos prácticos, en el caso de un canal se tiene:

Flujo laminar para R_e ≤ 500 a 600

Flujo de transición para $500 < R_e < 2000$

Flujo turbulento para $R_e > 2000$

Las discrepancias de estos valores de $R_{\rm e}$ respecto de los tubos es aparente, dado que para estos últimos $R_{\rm e}$ se definió usando el diámetro D en lugar del radio hidráulico como en la ec. 1.1 y en un tubo se tiene que D=4 $R_{\rm h}$.

En la mayoría de los canales el flujo laminar ocurre muy raramente debido a las dimensiones relativamente grandes de los mismos y a la baja viscosidad cinemática del agua. La única ocurrencia de este flujo se presenta cuando escurre el agua en láminas muy delgadas sobre el terreno, como es el caso del flujo de agua de Iluvia sobre cubiertas y superficies pavimentadas, donde el tirante es pequeño.

En el caso de canales naturales, la rugosidad de la frontera es normal—mente tan grande que ni siquiera ocurre el flujo de transición.

Por lo que se refiere a la preponderancia de las fuerzas de gravedad, —

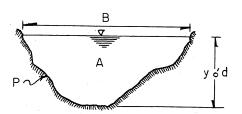
existe también otra clasificación de los flujos que será presentada en el capítulo 3.

1.3 Geometria de las Secciones

El término sección normal de un canal usado en este libro se refiere a - la sección considerada normal a la plantilla. Por el contrario, la sección vertical de un canal se toma sobre el plano vertical que pasa por el punto más bajo de la sección. Si — el canal es prácticamente horizontal, ambos conceptos coinciden.

La sección de un canal natural es generalmente de forma muy irregular y variando constantemente de un lugar a otro. Los canales artificiales usualmente se diseñan con formas geométricas regulares siendo las más comunes la trapezoidal, la rectangular, la triangular y la circular. La parabólica se usa como una aproximación de secciones en canales naturales. En túneles que funcionan a superficie libre es frecuente encontrar la forma de herradura.

La selección de una forma determinada de sección depende del tipo de canal por construir, así la trapezoidal es muy común en canales no revestidos, la rectangular en canales revestidos con materiales estables: concreto, mampostería, madera, etc. la triangular en canales pequeños y en las cunetas de carreteras y la circular en alcantarillas, colectores y túneles. Existen formas compuestas con las anteriores que encuentran utilidad en grandes alcantarillas y colectores y que permiten el paso del hombre a su interiore.


Los elementos geométricos más importantes de una sección son los si-—guientes:

<u>Tirante.</u> Se puede interpretar de dos maneras distintas de acuerdo con el tipo de sección que se considera. Para la sección normal de un canal, es el tirante normal -a la dirección del flujo o sea la altura de la sección. Para la sección vertical, el <u>ti</u>

rante y es la distancia vertical del punto más bajo de la sección hasta la superficie libre (fig. 1.3). Entre ambas, existe la relación

$$d = y \cos \theta \qquad (i.2)$$

donde θ es el ángulo de la plantilla del canal respecto de la horizontal.

El ancho de la superficie libre B de un canal se presenta en la fig 1.3. El — área hidráulica A es el área de la sección (normal o vertical) ocupada por el líquido.

Fig. 1. 3 Sección de un canal

El perímetro mojado P es el perímetro de la sección (normal o verti—cal) en contacto con una frontera rígida, esto es, no incluye la superficie libre.

El radio hidráulico Rh de una sección (normal o vertical) es la relación del área hidráulica al perímetro mojado.

$$R_{h} = \frac{A}{P} \tag{1.3}$$

El tirante hidráulico es la relación del área hidráulica al ancho de la superficie libre en cualquiera de las formas siguientes:

$$D = \frac{A_n}{B_n} \quad \text{para la sección normal} \tag{1.4 a}$$

$$Y = \frac{A_V}{B_V} \quad \text{para la sección vertical}$$
 (1.4 b)

1.4 Ecuaciones para flujo unidimensional permanente

En el capítulo 4 del Vol. 1 se derivaron en forma general las ecuaciones fundamentales de la Hidráulica haciendo la particularización para el flujo unidimensional permanente. Se presenta aquí un resumen de dichas ecuaciones.

1.4.1 Ecuación de continuidad

La ecuación diferencial de continuidad para un flujo unidimensional — permanente es la ec 4.6a del vol 1:

$$\frac{\partial S}{\partial (\rho \lor A)} = 0 \tag{1.5}$$

donde

e densidad del líquido, en kg seg²/m⁴

V velocidad media en la sección, en m/seg

A área hidráulica de la sección, en m²

s coordenada curvilinea que sigue el eje del canal, en m Sí, además, el flujo es incompresible

$$\frac{(A.6)}{25} = 0$$

cuya integración entre dos secciones 1 y 2 conduce a :

VA = constante

$$V_1 A_1 = V_2 A_2$$
 (1.7)

1.4.2 Ecuación de energía

La ecuación diferencial de energía para un flujo unidimensional perma_nente e incompresible resulta de la ec(4.18)del vol 1.

$$\frac{d}{ds} \left(z + \frac{P}{Y'} + \infty \frac{V^2}{2g} + h_r \right) = 0$$
 (1.8)

donde

- s coordenada curvilínea siguiendo el eje del canal sobre la plantilla.
- z carga de posición medida desde el plano de referencia hasta la - plantilla de la sección, en m.
- $\frac{\mathbf{p}}{g'}$ carga de presión sobre la plantilla de la sección, en m .
- g aceleración de gravedad, en m/seg².

- h_r pérdida interna de energia, en m
- V velocidad media en la sección, en m/seg.
- coeficiente de Coriolis para corregir el efecto de la distribución irregularde velocidades en la sección.

La integración de la ec 1.8 entre dos secciones 1 y 2 conduce a:

$$z + \frac{P}{Y} + 2\frac{\sqrt{2}}{2g} + h_r = constante$$
 (1.9.a)

$$z_1 + \frac{p_1}{y} + \infty_1 + \frac{\sqrt{2}}{2g} = z_2 + \frac{p_2}{y} + \infty_2 + \frac{\sqrt{2}}{2g} + \sum_{i=1}^{2} h_i$$
 (1.9.b)

donde $\sum_{1}^{2} h_{r}$ representa la pérdida interna de energía entre las dos secciones.

1.4.3 Ecuación de la cantidad de movimiento

La ecuación de la cantidad de movimiento para dos secciones 1 y 2 de unflujo unidimensional permanente e incompresible resulta de la ec 4.32 del Vol 1 dondese elimina el último término

$$\vec{F}_{p} + \vec{F}_{c} + \vec{F}_{c} = \rho \left[Q \beta \vec{\nabla} \right]_{2} - \rho \left[Q \beta \vec{\nabla} \right]_{i}$$
 (1.10)

donde

- F_n fuerza resultante debida a las presiones, en kg.
- fuerza resultante debida a la acción del esfuerzo cortante generado sobre las paredes del canal, en kg.
- Fc fuerza de cuerpo debida al peso propio, en kg.
- Q gasto en la sección, en m³/seg.
- V₁ vector de velocidad media en la sección, en m/seg,
- (3 coeficiente de Boussinesq para corregir el efecto de la distribución irregular de las velocidades en la sección.

Las fuerzas $\vec{F_p}$, $\vec{F_c}$ son las acciones que desde el exterior se aplican al volumen de control limitado por las secciones 1 y 2 y las paredes del canal.

1.5 Distribución de velocidades en la sección de un canal

La presencia de la superficie libre y de curvas a lo largo de un canal, la forma de la sección, la rugosidad superficial, el gasto y la acción de corrientes secundarias en el plano de la sección transversal afectan la distribución de velocidades en la sección de un canal. La fig 1.4 ilustra el aspecto general de la distribución de velocidades en la sección transversal típica de un río natural. Dicha distribución se presenta en base a las curvas que unen puntos de igual velocidad. Estas curvas normalmente se interpolan a partir de los datos de mediciones con molinetes, obtenidas en diferentes puntosde la sección transversal.

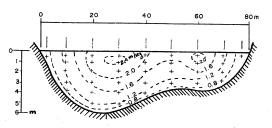


Fig 1.4 Aspectos de la distribución de velocidades en la sección transversal de un río.

En la fig 1.4 se observa que la velocidad mínima ocurre en la proximi—dad de la pared y que existe un incremento de la velocidad hacia la superficie libre. — El punto de velocidad máxima queda ligeramente abajo de la superficie libre, lo cual — se atribuye al movimiento circulatorio secundario inducido por la proximidad de los la—dos. Por ello podría considerarse que en canales anchos y de poco tirante, la velocidad máxima se localiza al nivel de la superficie libre.

En la fig 1.4 se observa que la zona donde ocurre la máxima velocidad - se localiza practicamente sobre la vertical que tiene mayor profundidad y a una distan-

cia de 0.05 a 0.25 del tirante desde la superficie libre hacia abajo. La fig 1.5 ilustra la forma de la distribución sobre una vertical y en ella se observa que la velocidad media se localiza a una profundidad aproximada de 0.6 del tirante y es aproximadamente el promedio de la velocidad a 0.2 y 0.8 del tirante o bien entre 0.8 y 0.95 de la velocidad superficial. En un canal ancho, con gran velocidad y poco tirante o bien en un canal liso, lavelocidad máxima se puede encontrar con frecuencia sobre la superficie libre. La rugosidad de un canal aumenta la curvatura de la curva de distribución de velocidades sobre una vertical y la máxima se presente abajo de la superficie libre. En una curva aumenta bastante—la velocidad en el lado exterior por la acción de la fuerza centrifuga.

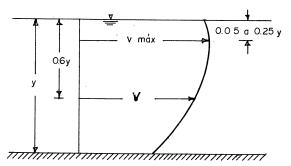


Fig 1.5 Distribución de velocidades sobre una vertical en la sección de un canal.

En canales muy anchos la distribución de velocidades en la región central de la sección es prácticamente la misma que la que ocurre en un canal rectangular de ancho infinito, esto es, los bordos del canal prácticamente no afectan al flujo y si el ancho del canal es mayor de 5 a 10 veces el tirante, el canal se puede considerar como un flujo de tipo bidimensional. El método de aforo en un canal ha sido ya explicado en el capítulo 4 del Vol 1.

Como resultado de la distribución no uniforme de las velocidades de un canal, se ha determinado experimentalmente que el coeficiente 🗸 varía entre 1.03 y 1.36.

En la misma forma, el coeficiente /3 varía aproximadamente entre 1.01 y 1.12. Para ma yores detalles acerca de estos coeficientes, el lector se puede referir al capítulo 4 del Vol 1.

Para fines prácticos, se presentan a continuación algunos valores de — $\propto y$ (3 propuestos por K**o**lupaila.

Canales	Valor	es de <i>∞</i> ⊂ medio	máx.	Va min.	lores de medio	B máx.
Canales regulares, acueductos, vertedores	1.10	1.15	1.20	1.03	1.05	1.07
Ríos naturales y torrentes	1.15	1.30	1.50	1.05	1.10	1.17
Ríos bajo una cubierta de hielo	1.20	1.30 1.50 1.75	2.00	1.07	1.17	1.33
Ríos de valle con cauce de inundación	1.50	1.75	2.00	1.17	1.25	1.33

Para valores aproximados se pueden usar las siguientes expresiones

$$\beta = 1 + \epsilon^2$$
 (1.11.6)

donde eq = (V máx/V) - 1, donde V máx es la velocidad máxima y V la media. Algunos valores de <math>V máx/V fueron obtenidos por Rehbock (ref. 1) como sigue :

Material en el canal		v _{máx} /V
Cemento		1.2
Madera en duelas	•	1.2
Grava fina		1.3
Grava gruesa		1.41
Roca con grandes cantos	2.5 a	1.92
Grava con pasto y arbustos	2.17 a	1.33
Grava gruesa y piedras	1 .7 2 a	1.43
Grava	1.61 a	1.33
Limo y arena	1 . 54 a	1.21
Madera, concreto y ladrillo	1.43 a	1.09

Según Bazin: $\angle = 1 + \frac{210}{C^2}$

donde C es el factor de fricción de Chezy (Cap 2).

En la mayoria de los problemas de la práctica se puede suponer que -
« = \beta = 1 y, a menos que se indique lo contrario, así se considerará en lo que sigue.

1.6 Distribución de presiones en una sección

Considérese un canal de eje recto de ancho unitario y ángulo + de - inclinación respecto de la horizontal (fig 1.6). El peso del elemento sombreado de espesor ds es igual a : * y' cos + ds, y la componente normal a la plantilla es : * y' v' cos + ds.

Por lo tanto, la presión en el punto D es

$$p' = \frac{\cancel{x} \quad y' \cos^2 \theta - d_s}{d_s} = \cancel{x} \quad y' \quad \cos^2 \theta - d_s$$

y la correspondiente carga de presión se puede expresar en cualquiera de las dos formas -siguientes

$$h' = y' \cos^2 \Theta \tag{1.12.a}$$

$$h' = d' \cos \frac{\theta}{2}$$
 (1.12.b)

donde d' = y' cos $\frac{\Theta}{\Gamma}$ es la distancia desde la superficie libre al punto, medida en dirección normal a la plantilla. De la geometría del canal se deduce que la ec (1.12.b) es --igualmente aplicable en flujo uniforme y variado, en cambio la ec (1.12.a) sólo tiene aplicación en flujo uniforme pero no variado, especialmente cuando $\frac{\Theta}{\Gamma}$ es grande.

Las ecs (1.12) determinan la ley hidrostática con que varía la distribución de presiones cuando el flujo es paralelo, como en la fig 1.6. De esta manera, la carga de presión en el punto B sobre la plantilla del canal se obtendrá a partir de cualquiera de las dos ecuaciones siguientes:

$$\left(\frac{p}{r}\right)_{B} = y \cos^{2} - \Phi$$

 $\left(\frac{p}{r}\right)_{B} = d \cos^{2} - \Phi$

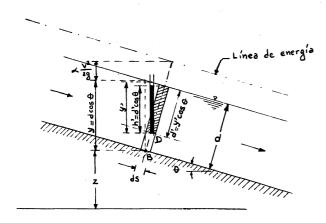


Fig. 1.6 Distribución de presiones para flujo paralelo en canales de gran pendiente.

Se considera que un canal o un rio tienen una gran pendiente cuando - sen -0 = 0.01, lo cual equivale a que $\cos^2 -0$ = 0.9999. Por tanto, en la mayoria de los casos se podrá considerar a la pendiente suficientemente pequeña para que $\cos^2 -0$ ≈ 1 - y que la distancia y pueda considerarse igual al tirante \underline{d} de la sección normal a la plantilla; esto equivaldrá a una distribución hidrostática de presiones como en el caso de un -- depósito con agua en reposo. Sin embargo, habrá casos excepcionales, tales como los canales de descarga de vertedores, donde $\cos^2 -0$ $\neq 1$ y una distribución de presiones distinta de la hidrostática.

Para el caso de una distribución hidrostática de presiones en la sección de un canal de pendiente pequeña y flujo paralelo, la energia total en la sección se podrá calcular de la ecuación siguiente:

$$H = z + y + \frac{\sqrt{2}}{2g}$$

y en el caso general de un canal de gran pendiente, la energía total en la sección se podrá determinar con cualquiera de las dos ecuaciones siguientes:

$$H = z + y \cos^2 \theta + \alpha \frac{V^2}{2g}$$
 (1.13a)

$$H = z + d \cos \theta + \sqrt{\frac{V^2}{2a}}$$
 (1.13b)

según que el tratamiento sea con base en el tirante y de la sección vertical o d de la sección normal (fig 1.6). La ec. (1.13 b) será también válida para el flujo variado.

Cuando el flujo en el canal no sea con lineas de corriente paralelas será necesario hacer correcciones a las ecuaciones anteriores con el fin de tomar en cuenta la componente normal de la aceleración debida a la curvatura de las lineas de corriente y
que tiene efecto sobre la distribución de presiones en cada sección al incluir la fuerza centrifuga que aparece.

En el caso de conductos a presión es común considerar que la energía – del flujo es constante para cualquier punto dentro del campo. Ello equivale a aceptar que el flujo es irrotacional y que la distribución de velocidades en dirección normal a una línea de corriente sigue la ley: v = c/r, donde c es una constante de proporcionalidad y r el radio de curvatura de la línea de corriente (capítulo 10 del Vol. I).

En el caso de conducciones a superficie libre donde las líneas de corriente pue den tener curvatura apreciable, es necesario corregir la carga de presión considerada en - la ec (1.13b) por medio de la ec 4.34 (Vol 1).

Supóngase, por ejemplo, un flujo bidimensional donde la curvatura de las líneas de corriente produce componentes de la aceleración normales a la dirección del flujo. La distribución de presiones sobre la sección normal se desvía de la hidrostática considerada en la ec (1.13b). El flujo curvilíneo puede ser cóncavo o convexo (figs. 1.7.a y b, respectivamente). En ambos casos la distribución de presiones no lineal se representa-por la línea AB' en lugar de la distribución recta AB que ocurriría si el flujo fuera parale lo. En flujo cóncavo, las fuerzas centrifugas son descendentes aumentando la acción dela gravedad de tal modo que la presión resultante es mayor que la hidrostática resultantede un flujo paralelo.

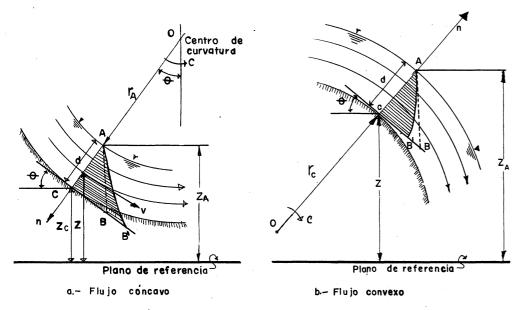


Fig. 1.7 Distribución de presiones en flujo curvilíneo en canales de gran pendiente

Considerándo el flujo cóncavo de la fig. 1.7a, se puede suponer que - la velocidad v sobre cualquier línea de corriente en la sección AC se distribuye de acuer do con la ley: v = c r, donde c es una constante (ver Cap 3, del Vol 1) y r el radio local de la línea de corriente en cada punto. Esto equivaldría a un flujo rotacional donde la única componente de rot \overrightarrow{v} , normal al plano del flujo, sería \overrightarrow{v} \overrightarrow{v}

$$V = \frac{1}{d} \int v \, dr = \frac{c}{d} \int_{r_{A}}^{r_{C}} r \, dr = \frac{c}{2d} (r_{C}^{2} - r_{A}^{2})$$
 (1.14)

La ec (4.9b) del Vol 1 sería entonces

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + z \right) = \frac{c_3 r}{g}$$

Puesto que dn= dr, la integral de la ecuación anterior entre el punto A y otro cualquiera de radio r y altura z sería:

$$\frac{\mathbf{p}}{\mathbf{y}} = -\left[\mathbf{z}\right]_{\mathbf{z}_{\mathbf{A}}}^{\mathbf{z}} + \frac{\mathbf{c}^{2}}{\mathbf{g}} \left[\frac{\mathbf{r}^{2}}{2}\right]_{\mathbf{Y}_{\mathbf{A}}}^{\mathbf{r}}$$

o bien, la presión en un punto cualquiera de la sección es

$$\frac{p}{x^2} = z_A - z + \frac{c^2}{q} \quad \frac{\left(r^2 - r^2A\right)}{2}$$

Sustituyendo ahora a c en términos de V de la ec (1.14)y simplificando, resulta

$$\frac{P}{V} = z_A - z + \frac{2 \vee^2 d^2 (r^2 - r^2_A)}{g (r^2_c - r^2_A)^2}$$
(1.15)

Para el punto C, con z_A - z_C = d cos $\frac{\theta_7}{2}$ la carga de presión es

$$\left(\frac{p}{y}\right)_c = d \cos \theta + \frac{2 \sqrt{2} d^2}{g \left(r_c^2 - r_A^2\right)}$$

pero, con
$$\frac{r_{C}^{2} - r_{A}^{2}}{2} = \frac{(r_{C} + r_{A})(r_{C} - r_{A})}{2} = r_{m} d$$

donde $r_m = (r_C + r_A)/2$ es el radio medio local de las líneas de corriente, la carga de presión en el fondo vale

$$\left(\frac{p}{x}\right)_{C} = d \cos \theta + \frac{\sqrt{2} d}{r_{m} g} \tag{1.16}$$

Por un desarrollo análogo para el flujo convexo, se demuestra que el último término de la ec (1.16) tiene signo negativo.

Por simplicidad, es costumbre suponer que el radio medio r_m se puede confundir con el radio del fondo $r_c = R$, de tal manera que la energía del flujo en la sección normal a un canal de fuerte curvatura vertical será:

$$H = z_c + d \cos \theta + \frac{\sqrt{2} d}{Ra} + \sqrt{\frac{\sqrt{2}}{2a}}$$
 (1.17)

donde el término $\frac{+}{2}$ $\sqrt{2}$ d/Rg corrige el efecto de la curvatura de las líneas de corriente sobre la carga de presión y tiene signo positivo cuando el flujo es cóncavo y negativo cuando el flujo es convexo.

Problema 1.1 La fig. 1.8 muestras las condiciones generales del flujo en un río entre dos secciones del mismo. Conocidas A₁ y A₂, la pérdida de energía h_f y el desnivel Δy de la superficie libre del agua, encontrar una ecuación para calcular el gasto.

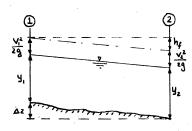


Fig 1.8 Tramo de un río en el problema 1.1

Solución. De la ecuación de la energía (1.9)

resulta:
$$\Delta z + y_1 + \frac{V_1^2}{2a} = y_2 + \frac{V_2^2}{2a} + h_f$$

De la ecuación de continuidad:

$$V_1 = A_2 V_2 / A_1$$
, se tiene que:

$$\frac{{V_1}^2}{2g} = \frac{{A_2}^2}{{A_1}^2} = \frac{{V_2}^2}{2g}$$

que substituida en la ecuación de energía, resulta:

$$\Delta_z + y_1 + \frac{A_2^2}{A_1^2} + \frac{V_2^2}{2g} = y_2 + \frac{V_2^2}{2g} + h_f$$

y con $\Delta y = \Delta z + y_1 - y_2$, al despejar a V_2 y multiplicar por A_2 se obtiene

$$Q = A_2 \sqrt{\frac{2g (\Delta y - hf)}{1 - (A_2/A_1)^2}}$$

A través de esta ecuación sería posible determinar en forma aproximada — el gasto de una gran avenida en un río si se puede obtener Δy a partir de las huellas de jadas por el agua en las orillas.

Problema 1.2. La celeridad de una onda elemental sobre la superficie libre de un canal se puede determinar a partir de las ecuaciones de continuidad y de la energía. Determinar la ecuación que permite calcular dicha celeridad.

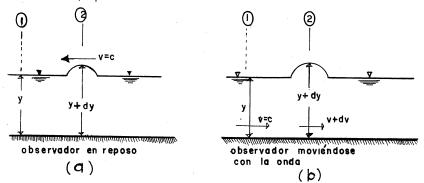


Fig. 1.9 Onda superficial elemental

Solución.

Aparentemente el flujo es no permanente, sin embargo, de la observa-ción de las figs. 1,9 se concluye que las condiciones no cambian con el tiempo.

De la ecuación de continuidad 1.6 se obtiene

$$V = \frac{dA}{ds} + A = \frac{dV}{ds} = 0$$

Supuesto un ancho unitario en el canal: A=y, dA=dy. Por lo tanto, de la ecuación anterior

$$V dy + y dV = 0$$

$$dV = -V \frac{dy}{y}$$
(a)

En la misma forma, de la ecuación de la energía 1.8 con z = const, --- p/r = y, $\ll 1$ y $h_r = 0$, se obtiene

$$dy + d(\frac{V^2}{2g}) = 0$$

 $dy + \frac{V}{g} dV = 0$ (b)

Sustituyendo la ec (a)en la (b)

$$dy - \frac{\sqrt{2}}{gy} dy = 0$$

y con V = c

$$c = \sqrt{g y}$$
 (c)

ecuación que permite obtener la celeridad de una onda elemental cuya altura dy es peque ña en comparación del tirante. Para un canal de cualquier forma, se puede sustituir y por su tirante hidráulico Y

$$c = \sqrt{g Y}$$
 (d)

Problema 1.3. En la fig. 1.10 se muestra un vertedor de cresta ancha de forma rectangular que tiene un umbral de altura w y una longitud de cresta b. Utilizando la ecuación de la cantidad de movimiento, derivar una expresión para el gasto que vierte sobre la plataforma haciendo las siguientes hipótesis: a) despreciar las fuerzas de fricción F_f^i y F_f^{ii} ; b) de acuerdo con los resultados de un experimento, aceptar que $y_2 = (y_1 - w)/2$ y que el empuje debido a las presiones sobre la cara vertical del umbral es igual a la que resulta de la presión hidrostática medida a partir de la superficie libre aguas arriba; c) suponer -

flujo paralelo y distribución hidrostática de presiones.

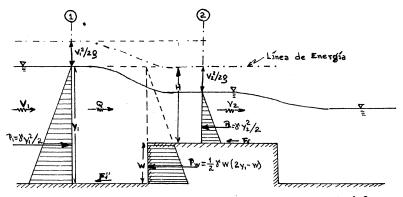


Fig 1.10 Vertedor de cresta ancha del problema 1.3

Solución

Se considera el volumen de control limitado por las secciones 1 y 2, el piso del canal, la pared vertical del umbral y la superficie libre del agua. Las fuerzas horizontales (por unidad de ancho) sobre las superficies verticales que limitan al volumen
de control se pueden calcular de acuerdo con las hipótesis propuestas y son como sigue:

$$P_{1} = \frac{\mathbf{Y}}{2} y_{1}^{2}$$

$$P_{2} = \frac{\mathbf{Y}}{2} y_{2}^{2}$$

$$P_{w} = \frac{\mathbf{Y}}{2} \left[(y_{1} - w) + y_{1} \right] \quad w = \frac{1}{2} \mathbf{Y} \quad w \quad (2y_{1} - w)$$

Por tanto, según la ecuación de la cantidad de movimiento, resulta:

donde q = Q/b es el gasto por unidad de ancho del vertedor.

Por otra parte, de la ecuación de continuidad se tiene que: $V_1=q/y_1$, $V_2=q/y_2$ que al substituir en la ecuación anterior, resulta:

$$\frac{1}{2} x_{1}y_{1}^{2} - \frac{1}{2} x_{2}^{2} - \frac{1}{2} x_{3}w(2y_{1} - w) = \frac{x_{1}^{2}q^{2}}{g}(\frac{y_{1}^{2} - y_{2}^{2}}{y_{1}y_{2}^{2}})$$

o bien, al simplificar se tiene que

$$\frac{y_1 y_2}{y_1 - y_2} \left[y_1^2 - y_2^2 - w (2y_1 - w) \right] = \frac{2 q^2}{g}$$

De acuerdo con la segunda hipótesis, se tiene que $w=y_1-2y_2$, lo cual, substituido en la ecuación anterior, resulta:

$$\frac{y_1 y_2}{y_1 - y_2} \left[y_1^2 - y_2^2 - (y_1 - 2y_2) (y_1 + y_2) \right] = \frac{2 q^2}{g}$$

que al simplificar se obtiene:

$$\frac{3 y_1 y_2^3}{y_1 - y_2} = \frac{2 q^2}{g}$$

Substituyendo nuevamente $y_2 = (y_1 - w)/2$, resulta:

$$\frac{3 \quad y_1 \quad (y_1 - w)^3}{4 \quad (y_1 + w)} = \frac{2 q^2}{g}$$

 $y con H = y_1 - w$

$$q = \int_{16}^{3} \int_{2g}^{2g} \left(-\frac{y_1}{y_1 + w} \right)^{1/2} H^{3/2}$$

siendo el gasto total:

Q = q b =
$$0.433\sqrt{2g} \left(\frac{y_1}{y_1 + w} \right)^{1/2}$$
 b $H^{3/2} = C$ b $H^{3/2}$

Si h=0; C=1.918 y si h
$$\rightarrow \infty$$
 (y₁ $\rightarrow \infty$), C=1.36.

De observaciones experimentales se ha encontrado que C varía de ---1.685 a 1.48 (Capítulo 7 del Vol. I).

Problema 1.4. Al píe del cimacio de la fig 1.11 se tiene un deflector de 18.30 m de radio. El deflector descarga libremente y sírve para cambiar la dirección del flujo de la inclinación de la espalda del cimacio a la horizontal y descargar a la atmósfera entre muros divisores separados por una distancia de 24.40 m. Para un gasto de 1600 m³/seg, la superficie del agua en la sección vertical O B se encuentra en la eley 2.6 m.

Calcular las presiones hidráulicas que actúan sobre el muro divisor en la sección OC, con base en la ec 1.15 y la suposición de que el flujo arrastra aire de tal -

manera que la densidad de la mezcla agua - aire se puede estimar por la fórmula de Dou-

ma,

$$U = 10 \sqrt{\frac{0.2 \text{ V}^2}{\text{g R}_h}} - 1$$

donde

U porcentaje en volumen del aire arrastrado

V velocidad del flujo, en m/seg

R_h radio hidráulico, en m (ref 2)

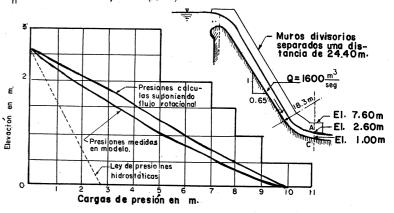


Fig. 1.11 Geometría de la estructura y resultados del problema 1.4

Solución:

La velocidad media en la sección vale

$$V = \frac{1600}{24.4 \times 2.6} = 25.2 \text{ m/seg}$$

Suponiendo que $R_h = y = 2.6$ m, el porcentaje en volumen de aire --

arrastrado es

$$U = 10 \sqrt{\frac{0.2 \times (25.2)^2}{9.8 \times 2.6}} - 1 = 20 \text{ por ciento}$$

Por esta razón, el peso específico de la mezcla 🧗 m resulta :

$$\frac{\sqrt{m}}{2} = 0.8$$

De la ec. 1.15, con $z_A = 2.6 \, \text{m}$, $r_A = 18.30 - 2.60 = 15.70 \, \text{m}$, y $r_C = 18.30 \, \text{m}$ se tiene :

$$\frac{p}{\chi_m} = 2.6 - z + \frac{2(25.2)^2 (2.6)^2 \left[r^2 - (15.70)^2\right]}{9.8 \left[(18.30)^2 - (15.70)^2\right]} \frac{2}{2}$$

y la carga de presión en metros de columna de agua es

$$\frac{p}{y^r} = \frac{y^r m}{y^r} \left[2.6 + 0.1121 (r^2 - 246.49) - z \right]$$
 en la cual $r = 18.30 - z$, $y = 0.8$

En la siguiente tabla se presentan los cálculos correspondientes y en lafig 1.11 los resultados en forma gráfica. Estos comparados con los obtenidos en un modelo hidráulico presentan una buena concordancia.

z	r	r ²	r ² - 246.49	p∕ <i>∦</i> en m
0	18.30	334.89	88.40	10.01
0.5	17.80	316.84	70.35	7.99
1.0	17.30	299.29	52.80	6.01
1.5	16.80	282.24	35.75	4.09
2.0	16.30	265.69	19.20	2.20
2.6	15.70	246。49	0.0	0

Aparentemente los resultados anteriores corresponden a una distribución de presiones sobre la vertical, sin embargo, debido a las propiedades de la presión, esta tiene la misma intensidad en todas direcciones y dichos resultados corresponden también – a la distribución de presiones sobre el muro divisorio.

CAPITULO 2 FLUJO UNIFORME

2.1 Introducción

El flujo uniforme raramente ocurre en la naturaleza debido a que los canales naturales son usualmente no prismáticos. Aún en canales prismáticos, la ocurrencia
de flujo uniforme es relativamente poco frecuente debido a la existencia de controles tales como vertedores, compuertas deslizantes, etc., los cuales dictan una relación tirantegasto diferente de la apropiada a un flujo uniforme.

Sin embargo, el flujo uniforme es una condición de importancia básica – que debe ser considerado en todos los problemas de diseño de canales. Por ejemplo, si – se propone instalar ciertos controles en un canal de riego, es necesario comparar su relación gasto-tirante con la de flujo uniforme y el carácter conjunto del flujo en el canal – dependerá de la forma que resulte de dicha comparación. En un canal con cierta pendien

te y rugosidad y que debe conducir cierto gasto, la condición de flujo uniforme es el criterio que gobierna el área de la sección transversal mínima requerida, o aún cuando exis
ta otro criterio que determine las dimensiones de la sección, estas no podrán ser menores
que dicha sección mínima.

Las fuerzas que actúan sobre el agua fluyendo en un canal, en adicióna la tensión superficial y de gravedad asociadas particularmente con la superficie libre,
son: las fuerzas de resistencia desarrolladas en las fronteras sólidas y la superficie libre,
las fuerzas de inercia internas debidas a la naturaleza casi siempre turbulenta del flujo,la presión normal a las paredes y plantilla (particularmente en regiones donde cambia la
geometría del canal) y ocasionalmente fuerzas debidas al movimiento del sedimento. La
interacción mutua de estas fuerzas dá lugar a la complejidad del flujo a superficie librey únicamente a base de simplificaciones y generalizaciones es posible un entendimientode su mecánica.

Para que ocurra un flujo uniforme es necesario que exista un balance en tre la componente del peso en la dirección del flujo y la fuerza de resistencia. Para alcanzar o alejarse de este equilibrio es necesaria la presencia de flujos variados, antes - y/o después del uniforme. El flujo uniforme en un canal puede ser laminar o turbulento, pero las dimensiones relativamente grandes de la mayoría de los canales combinadas con la baja viscosidad del agua, hacen que el flujo laminar sea poco común en la práctica.- Aunque la velocidad media en un canal sea suficientemente baja para permitir el flujo laminar, factores secundarios (como los disturbios del viento) usualmente producen velocidad des locales o corrientes que exceden grandemente la velocidad límite laminar para los tirantes de poca magnitud. La única ocurrencia genuina de flujo laminar a superficie libre es la que se presenta en el drenaje del agua de lluvia sobre cubiertas y pavimentos - de carretera debido a que el tirante es pequeño.

En el caso de ríos, la rugosidad de la frontera es normalmente tan grande que aún el flujo turbulento hidráulicamente liso observado en tubos, raramente ocurre.

2.2 Fórmula de Chezy

La fórmula de fricción desarrollada por Chezy en 1775 fué obtenida originalmente para su aplicación en canales y su validez se restringe al flujo uniforme.

Supóngase un canal de sección cualquiera como se ilustra en la fig 2.1,—donde el flujo es uniforme. Puesto que el tirante y la velocidad media permanecen cons—tantes, la aceleración del agua al pasar de una sección a otra (y como consecuencia la —fuerza de inercia) vale cero. De ese modo, al establecer la ecuación de equilibrio diná—mico del prisma de longitud Δx entre dos secciones normales, se tendría que la componente del peso en la dirección del escurrimiento debe ser igual a la fuerza de fricción producida en el fondo y evaluada a través del esfuerzo tangencial medio a0 sobre la frontera. —Es decir, se debe cumplir que:

$$\Upsilon A \Delta x sen \Theta = G_0 P \Delta x$$

donde A es el área hidráulica y P el perímetro mojado de la sección.

Si se hace $\frac{A}{P} = R_h$, radio hidráulico de la sección; sen $\Theta = S$, pendiente geométrica del canal y a su vez también pendiente de fricción, se puede escribir

$$\mathbf{Z}_{o} = \mathbf{X} R_{h} S$$
 (2.1.a)

Definida la velocidad de fricción (Apéndice B del Vol 1) como sigue:

la ecuación (2,1,a) también es:

$$\mathbf{v}_* = \sqrt{g \, R_h \, S} \tag{2.1.b}$$

Como en los tubos, se puede aquí suponer que el esfuerzo tangencial ${f Z}_{{\sf O}}$ se expresa por la ecuación :

$$\mathcal{Z}_{\infty} = \frac{\mathcal{Z}}{q} V^2 F (Re, \frac{\epsilon}{Rh})$$

donde & es la rugosidad absoluta de la pared. (Apéndice B del Vol 1)

Por tanto, se obtiene:

$$\mathcal{F}_{R_h} \quad S = \frac{\mathcal{F}}{g} \quad V^2 \quad F(R_e, \frac{\epsilon}{R_h})$$
 (2.2)

o sea

$$V = \sqrt{\frac{g}{F}} \sqrt{R_h S}$$
 (2.3°a)

$$V = C \int R_h S$$
 (2.3.b)

que es la fórmula de Chezy, idéntica a la encontrada para tubos. C es un coeficiente de fricción que es función del número de Reynolds y de la rugosidad relativa del canal.

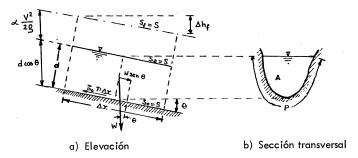


Fig 2.1. Equilibrio de un prisma líquido en flujo uniforme.

La ec (2.3.b) también se escribe como sigue:

$$S = \frac{8g}{C^2} \frac{1}{4 Rh} \frac{V^2}{2g} = \frac{f}{4 Rh} \frac{V^2}{2g}$$
 (2.4)

donde

$$f = \frac{8g}{C^2} \tag{2.5}$$

La ec (2,4) es la fórmula de Darcy-Weisbach aplicable a canales y es idéntica a la de tubos con la única salvedad de que se ha escrito en términos del radio-hidráulico y no del diámetro, como es común hacerlo.

Estos resultados parecen indicar una completa analogía en el problema – de fricción entre canales y tubos, siendo suficiente que en las fórmulas obtenidas para estos últimos se utilice a 4 Rh en lugar del diámetro. El radio hidráulico tomaría en cuenta el efecto de forma en la sección del canal. Sin embargo, para llegar a estas conclusiones se ha tenido que aceptar la existencia de un esfuerzo tangencial medio sobre toda la pared, el cual es dependiente de Rh como única magnitud que toma en cuenta la forma de la sección (ec 2.1.a). Las últimas investigaciones sobre el tema parecen encaminarse a corregir los errores involucrados en esta consideración.

2.3 Flujo laminar a superficie libre

En un conducto abierto, el flujo laminar se presenta para números de Rey nolds inferiores a 500. A través de las ecuaciones del movimiento derivadas en el Capítulo 4 del Vol 1, se puede obtener la ley de distribución de velocidades para este tipo de flujo, el cual se considera además permanente e incompresible.

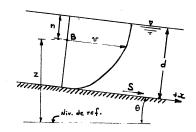


Fig 2.2. Distribución de velocidades en un flujo laminar.

Con referencia a la fig 2.2, se considera este tipo de flujo en un canal muy ancho que lo aproxima al flujobidimensional.

De acuerdo con la ec (1 .12 b), la -presión en un punto B sobre la sec-ción transversal es

$$\frac{p}{n} = n \cos \theta$$

y debido a que el flujo es uniforme, dicha presión no cambia de una sección a otra; esto - es: $\partial p/\partial x = 0$; por la misma razón $\frac{\partial v}{\partial x} = 0$. Además, con $\partial z/\partial x = S$, al aplicar la ec (4.9a) del Vol 1, resulto que :

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{1}{\rho}\frac{\partial z}{\partial n} - g\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}\left(\frac{v^2}{2}\right) + \frac{\partial v}{\partial t}$$

y con
$$\delta = -\mu \frac{\partial v}{\partial n}$$
 y $\frac{\partial v}{\partial t} = 0$, se tiene : $-\frac{\mu}{\mu} \frac{\partial^2 v}{\partial n^2} - gS = 0$

o bien, integrando resulta que :

$$\frac{\mathbf{s} \cdot \mathbf{n}}{\mathbf{s} \cdot \mathbf{n}} = -\frac{\mathbf{n}}{\mathbf{b} \cdot \mathbf{g}} \cdot \mathbf{s} \cdot \mathbf{n} + \mathbf{C}_1$$

La constante de integración C_1 se obtiene de la condición de frontera -que para n=0, $\frac{3}{2}\frac{v}{n}=0$; esto es, la velocidad es máxima sobre la superficie libre。 -Por tanto, $C_1=0$. Integrando nuevamente, se obtiene:

$$v = -\frac{8}{2\mu} S n^2 + C_2$$

Para n = d, v = 0, y entonces

$$C_2 = \frac{x}{2 \mu} \text{ s d}^2$$

La solución final resulta:

$$v = \frac{8}{2 \mu} S (d^2 - n^2)$$
 (2.6)

La ec (2.6) representa una ley parabólica de distribución de velocidadesmuy semejante a la de los conductos forzados. En esta ecuación S corresponde a la pendiente por fricción que, en el caso de flujo uniforme, es igual a la del fondo. Para n=0, se obtiene la velocidad máxima: $v_{máx}=\sqrt[8]{5}\,d^2/2\mu$.

La velocidad media resulta:

$$V = \frac{1}{A} \iint_{A} v dA = \frac{1}{d} \int_{0}^{d} \frac{x}{2 \mu} S(d^{2} - n^{2}) dn$$

Al efectuar la integración y tomar límites, se tiene:

$$V = \frac{\% \text{ S d}^2}{3 \mu} = \frac{2}{3} v_{\text{máx}}$$
 (2.7)

Un cálculo sencillo muestra que la velocidad media se localiza a 0.42 d desde la plantilla.

Esto es, nuevamente en el flujo laminar en canales, la pérdida de energía es proporcional a la primera potencia de la velocidad. Si se despeja S de la ec(2.7), y se sustituye en la ec (2.4), resulta:

$$\frac{3 \mathcal{U}}{\chi d^2} V = \frac{f}{4 R_h} \frac{V^2}{2g}$$

Despejando a f y tomando en consideración la ec (2.5), se tiene que:

$$f = \frac{8g}{C^2} = \frac{24}{Re} \tag{2.8}$$

donde

$$R_e = \frac{V R_h}{3}$$

Igual que en un tubo, el flujo laminar en un canal rectangular muy an--cho depende exclusivamente del número de Reynolds. Se han hecho desarrollos semejantes
para otras formas de sección concluyendo que el coeficiente f queda expresado por una
ecuación general semejante a (2.8)

$$f = \frac{8g}{C^2} = \frac{K}{R_P}$$
 (2.9)

donde K depende de la forma de la sección.

La ec (2.8) ha sido verificada experimentalmente en canales lisos y en la ref 2 se presentan los resultados obtenidos en la Universidad de Minnesota para canales muy anchos. En canales triangulares con ángulos centrales variando entre 30° y 150° se ha encontrado una buena concordancia para K = 14 en la ec (2.9). Sin embargo, en el caso de canales rugosos, se ha encontrado que K es generalmente más grande que en canales lisos, variando dentro del rango 33 y 60 (ref 2).

2.4 Flujo turbulento a superficie libre

Con base en la ley universal de distribución de velocidades (Apéndice B del Vol 1) Keulegan (ref 3) derivó ecuaciones teóricas para determinar la velocidad ---

media en canales lisos y rugosos de gran ancho con flujo turbulento uniforme. Dichas -- ecuaciones son:

Canales lisos
$$V = v_* (A_1 + 5.75 \log \frac{v_* R_h}{3})$$

Canales rugosos
$$V = v_* (A_r + 5.75 \log \frac{v_* R_h}{3})$$

donde

v* velocidad de fricción (ec 2.1.b)

A1, Ar cantidades variables de acuerdo con la rugosidad

Con resultados de ensayes de Bazin y del propio Keulegan, éste obtuvolos siguientes valores:

canales lisos
$$A_1 = 3.25$$

canales de rugosidad ondulada $A_r = 1.3$

canales de madera $A_r = -3$

canales rugosos

$$A_r = 3.23 \text{ a } 16.92 \text{ (medio } 6.25)$$

Con base en resultados de distintos autores, Iwagaki hizo un estudio más profundo y encontró que la resistencia al flujo turbulento en un canal es mayor que en un tubo (de igual rugosidad y radio hidráulico) a medida que aumenta el número de Froude – $(F_r = V/\sqrt{gy})$ en el primero, lo cual se atribuye a la inestabilidad de la superficie libre del canal que crece con dicho número. En la ref 2 se presentan los valores de C₁ y – C_r contra los de F_r obtenidos por dicho autor.

Hasta ahora no se ha realizado una investigación experimental exhaustiva del factor de fricción C, tal como la efectuada para f en el caso de tubos, no sólo debido a las variables adicionales en el caso de los canales, sino también al rango tan amplio de magnitudes y tipos de rugosidad encontradas en la práctica y también a la dificultad de obtener en el laboratorio un flujo uniforme permanente completamente desarrollado.

Hasta la fecha de publicación del libro de Chow (1959), se había verifi-

cado parcialmente que el factor de fricción C ó f en canales se podría — obtener de las fórmulas para conductos forzados, modificando simplemente el número de – Reynolds para referirlo al radio hidráulico (D = 4 Rh). Schmidt y Chow (refs 1 y 2) presentan en sus libros los resultados de diferentes investigadores para confirmar lo anterior, siendo sus conclusiones más importantes las siguientes:

- a) Zona laminar. En canales lisos, el factor f sigue las ecuaciones generales (2.8) y—
 (2.9). Se verifica la ec (2.8) para sección rectangular muy ancha y que K = 14 en la sección triangular. En canales rugosos el factor f sigue la ley dada por la ec (2.9) pero K adquiere valores mayores que los obtenidos para canales lisos, variando entre 33 y 60 de -acuerdo con la forma de la sección y la rugosidad.
- b) Zona de transición. Como en los tubos, el estado de flujo cambia de laminar a turbulento a medida que aumenta el número de Reynolds, con una zona de transición cuyos límites no están bien definidos. El límite inferior depende de la forma de la sección y varíaentre 500 y 600. El superior puede llegar hasta 2500.
- c) En la zona turbulenta los resultados experimentales siguen aproximadamente la ecua—ción de Blasius (ec 8.11 del Vol 1) que, con D = 4 Rh en el número de Reynolds, es:

$$f = \frac{8g}{C^2} = \frac{0.223}{R_0^{1/4}}$$
 (2.10)

la cual vale para R_e \angle 2.5 x 10⁴ y también la de Prandtl – von Kármán que con las mis mas transformaciones es:

$$\frac{1}{\sqrt{f}} = \frac{C}{\sqrt{8a}} = 2 \log (R_e \sqrt{f}) + 0.4$$
 (2.11)

válida hasta $R_e = 2.5 \times 10^4$. Después se observa un ascenso más o menos brusco a medida que aumenta el número de Reynolds para después tender a la horizontal en el estado de tur bulencia plenamente desarrollada. En canales lisos la forma de la sección no tiene una in fluencia importante sobre f_o . Lo contrario acontece en canales rugosos, debido posiblemen te a la formación de corrientes secundarias, cuya intensidad cambia con la forma de la sec

ción y para los cuales f es independiente de Re y sólo dependiente de la forma de la sección.

Investigaciones realizadas posteriormente permitieron observar que por el efecto de la superficie libre y la interdependencia entre el radio hidráulico, gasto y pendiente, la relación f- R_e en un canal no sigue exactamente los resultados obtenidos para los tubos (ref 5).

A partir de la ley de distribución universal de velocidades de von Kármán, Keulegan había derivado ya una ecuación diferente de la(2.11) para canales rectangulares muy anchos que es

$$\frac{1}{\sqrt{f}} = \frac{C}{\sqrt{8g}} = 2.03 \log (R_e \sqrt{f}) + 0.14$$
 (2.12)

Por lo que respecta a la zona de transición, en la ref 6 se sugiere la aplicación de la fórmula de Colebrook y White válida para tubos, con coeficientes ligeramente modificados:

$$\frac{1}{\sqrt{f}} = \frac{C}{\sqrt{8g}} = 2 \log \left(\frac{12 R_h}{\epsilon} + \frac{R_e \sqrt{f}}{0.6375} \right)$$
 (2.13)

usando para la rugosidad absoluta € los valores dados en la tabla 2.1. En el caso de canales rugosos y plena turbulencia, esta ecuación se simplifica a la obtenida por Nikurad se para tubos, aplicada ahora a canales:

$$\frac{1}{\sqrt{f}} = \frac{C}{\sqrt{8g}} = 2 \log \left(\frac{12 R_h}{\epsilon} \right) \tag{2.14}$$

Tabla 2.1. Valores de € en mm para superficies de mampostería y concreto

Table 2818 Tallolos de 2 di mini para soperficios de maniposieria y concreto	
Concreto en construcción monolítica, colado sobre moldes metálicos impre \underline{g} nados de aceíte, sin irregularidades superficiales	0.15
Superficies de cemento muy liso con juntas terminadas a mano	0.3
Concretc colado en moldes metálicos aceitados, con juntas cuidadosamen te terminadas	0.48
Acueductos y tubos de madera o de concreto colado en formas de acero o precolados. Superficies alisadas. Tubos de barro vitrificado	0.6

Concreto en construcción monolítica colado en formas rugosas o superficies terminadas con gunita	1.5
Longitudes cortas de tubos de concreto de pequeña diámetro sin acabado – especial en las juntas	2.4
Concreto en tubos precolados con mortero en las juntas。 Canales rectos – en tierra	3.0
Conductos de concreto rugoso	4.2
Mampostería mal acabada	6.0
Gunita no tratada	0.3

Con ensayes en canales rectangulares de relaciones de aspecto y/b (tiran_te/ancho de plantilla) variando entre 0.025 y 0.144, Tracy y Lester (ref 7), en 1961, con_cluyeron una pequeña modificación a la constante aditiva de la ec (2.12) proponiendo el valor - 0.08.

E. O. Macagno (ref 8), en 1965, demostró que si se usa la ley logarítmica de Prandtl como una aproximación a la distribución de velocidades en canales de formas diferentes, es necesario cambiar tanto la constante aditiva como la multiplicativa.

Shih y Grigg (ref 9) en 1967 realizaron experimentos en canales de características similares a los de Tracy y Lester y concluyeron que los efectos de forma no quedan plenamente reflejados por el radio hidráulico, especialmente para relaciones de aspecto (y/b) muy grandes. Simultáneamente, Unger (ref 10) llegó a conclusiones semejantes – y observó la necesidad de utilizar coeficientes de forma de la sección del canal que influyera en la magnitud de la rugosidad.

Con base en los resultados de Tracy y Lester y de Shih y Grigg, N. Na-rayana (ref 11) concluyó que el radio hidráulico de la sección es muy útil, pero que para reflejar el efecto de forma es necesario otro parámetro lineal que es P/Rh (perímetro mojado/radio hidráulico). Para canales rectangulares lisos dicho autor presenta una modificación a la ec (2.11) que es:

$$\frac{1}{\sqrt{f'''}} = \frac{C'}{\sqrt{8g}} = 2 \log R_e \sqrt{f''} + 0.4$$
 (2.15)

donde f' es un factor de fricción modificado que Narayana hace depender de P/Rh; sin embargo, obsérvese que en el caso de canales rectangulares es equivalente a que dependa de la relación tirante/ancho. En la fig 2.3 se presenta la variación de f/f' con y/b, determinada por el autor de este libro a partir de los resultados de Narayana. En esta figura, – f es el factor de fricción de la ec (2.11) y f' de la ec (2.15) Narayana sugiere determinar dependencias similares para otras formas de sección.

Finalmente ha sido E. Blau en 1969 (ref 12) quien parece haber dado la -explicación más convincente al uso de factores de fricción modificados dependientes de la relación de aspecto. En efecto, para la derivación de la fórmula de Chezy (ec 2.3b), se

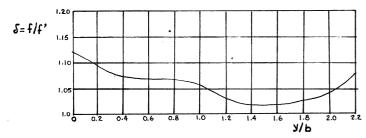


Fig 2.3 Variación de f/f' con la relación de aspecto para canales rectangulares lisos.

acepta la existencia de un esfuerzo tangencial medio **%**o sobre la frontera que no depende de la forma de la sección del canal y que coincide con el procedimiento de derivación seguido en los tubos. Esto no parece correcto en el caso de canales por la distribución tan irregular que pueda tener **%** sobre la pared de las muchas formas de sección, y que para seguir utilizando la fórmula de Chezy, sería necesario hacer una corrección a dicha consideración haciendo que el esfuerzo tangencial medio verdadero sea:

$$\mathbf{Z}_{0}^{\prime} = \mathbf{S} \mathbf{Z}_{0}$$
 (2.16)

donde

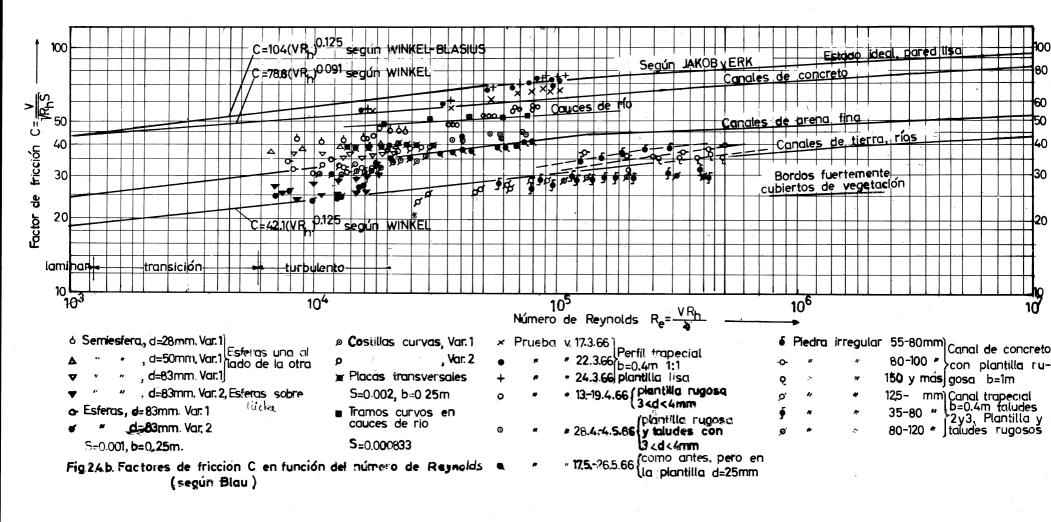
- factor de corrección que depende de la forma y relación de aspecto de la sección del canal
- esfuerzo tangencial medio usado en la derivación de la fórmula de Chezy y expresado por la ec (2.1 a).

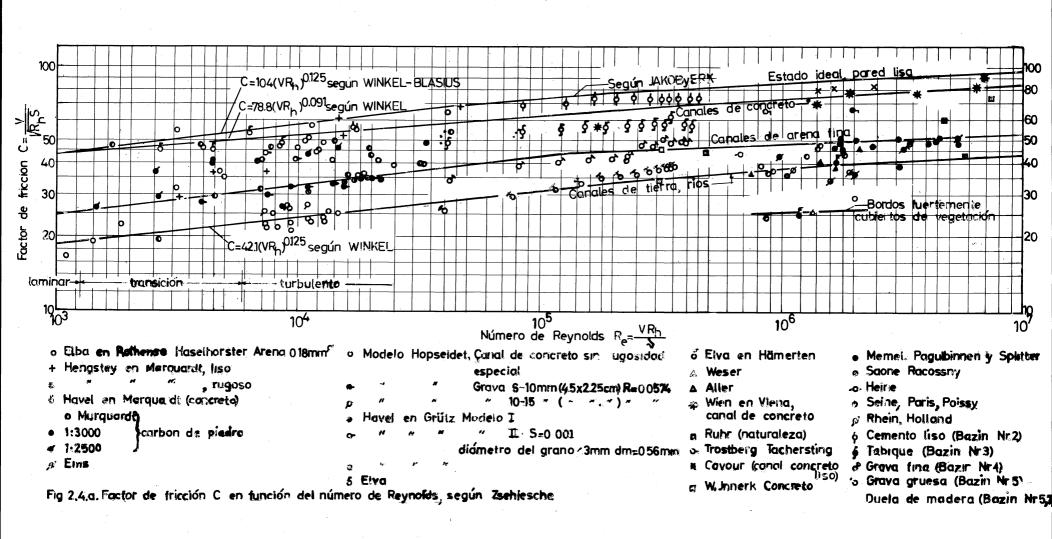
Esto implica una correción en la fórmula de Chezy y que al seguir nueva_ mente su desarrollo sería

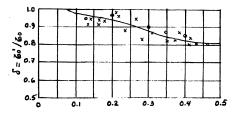
$$V = C \int R_h S = C' \int R_h S$$
 (2.17)

donde

$$C' = C \sqrt{S}$$


o bien, de esta ecuación y de la (2.5) resulta:


$$\delta = \left(\frac{C'}{C}\right)^2 = \frac{f}{f'} \tag{2.18}$$


que es la misma relación obtenida por Narayana y presentada en la fig 2.3.

En la ref 12, Blau presenta los resultados obtenidos por Zschiesche en — 1952 sobre mediciones realizadas en ríos y modelos de diferentes rugosidades y formas de sección. Las figs 2.4 a y b presentan dichos resultados (con algunas modificaciones he—chas por el autor) a través de la dependencia entre el factor de fricción C de Chezy y el número de Reynolds, haciendo una comparación con las fórmulas empíricas de diferentes autores.

De acuerdo con las investigaciones de distribución de esfuerzo cortante, Blau pudo obtener el valor de $\boldsymbol{\delta}$ para canales rectangulares en función de y/b que permite corregir los valores de Zschiesche. Sus resultados se presentan en las figs 2.5a, b, y c para canales rectangulares de un metro de ancho de plantilla y diferentes rugosidades. De la fig 2.5a se observan discrepancias hasta de 12 por ciento respecto de los resultados presentados por Narayana (fig 2.3).



Fig 2.5a $\delta = f(y/b)$ para canales rectangulares de cemento liso, b = 1 m

Fig 2.5b S = f(y/b) para canales rectangulares de concreto, b = 1m, rugosidad I = E = 1m

Fig 2.5c $\delta = f(y/b)$ para canales rectangulares de concreto, b = 1 m, rugosidad $\epsilon = 28 \text{ mm}$

Para aclaración en el uso de estos resultados se presenta a continuación un problema.

<u>Problema 2.1</u> Determinar el gasto que transporta en flujo uniforme un canal rectangular de concreto de 6 m de ancho, tirante de 3 m, pendiente de plantilla S = 0.001, con agua a la temperatura de $13^{\circ}C_{\circ}$

Solución Se tiene que la relación y/b = 3/6 = 0.5 y de la fig 2.5a, $\delta = 0.81$. Además, $R_h=(6 \times 3)/(6+2\times 3) = 1.5$ m y de la ec (2.17) resulta que:

$$V = C \sqrt{0.81 \times 1.5 \times 0.001} = 0.0348 C$$

Debido a que la solución es por tanteos, de la fig 2.4 se estima C = 80 y

por lo tanto, V = 2.78 m/seg. Para agua a 13° C, $\vartheta = 1.20 \times 10^{-0}$ m²/seg. El número de Reynolds es:

$$R_e = \frac{V R_h}{3} = \frac{2.78 \times 1.5 \times 10^6}{1.2} = 3.47 \times 10^6$$

por lo tanto, de la fig 2.4b, para canal de concreto liso resulta C = 79 dentro de la zonade flujo turbulento, existiendo entonces un valor más correcto para V que es

$$V = 0.0348 \times 79 = 2.75 \text{ m/sea}$$

y el número de Reynolds vale ahora $Re = 3.44 \times 10^6$, que nuevamente conduce a C = 79, quedando así hecho el ajuste. El gasto vale entonces :

$$Q = VA = 2.75 \times 3 \times 6 = 49.5 \text{ m}^3/\text{seg}$$

Con fines comparativas se hará a continuación el cálculo del gasto utilizando la ec (2.13). Para ello se elige $\epsilon = 1.5$ mm de la tabla 2.1. Así mismo, en forma tentativa con $R_e = 3.44 \times 10^6$, y con

$$f = \frac{8g}{C^2} = \frac{8 \times 9.8}{(79)^2} = 0.01255$$

de la ec (2.13) se obtiene.

$$\frac{1}{\sqrt{5}} = 2 \log \left(-\frac{12 \times 1.5}{0.0015} + \frac{3.44 \times 106 \sqrt{0.01255}}{0.6375} \right) = 11.58$$

resultando entonces que f y C valen:

$$f = 0.00745$$

$$C = \sqrt{\frac{8g}{f}} = \sqrt{\frac{8 \times 9.8}{0.00745}} = 102.5$$

Con nuevo ajuste resulta

$$V = 102.5 \sqrt{1.5 \times 0.001} = 3.97 \text{ m/seg}$$

$$R_e = \frac{3.97 \times 1.5 \times 10^6}{1.2} = 4.96 \times 10^6$$

$$\frac{1}{\sqrt{f}} = 2 \log \left(\frac{12 \times 1.5}{0.0015} + \frac{4.96 \times 10^6 \sqrt{0.00745}}{0.6375} \right) = 11.67$$

Resultando entonces que:

$$f = 0.0073$$
, $C = 103.5$

$$V = 103.5 \sqrt{1.5 \times 0.001} = 4.01 \text{ m/seg}$$

$$Q = 4.01 \times 18 = 72.7 \text{ m}^3/\text{seg}$$

que es 45 por ciento mayor que el obtenido con los resultados de Blau.

En el caso de canales trapeciales, Blau encontró buena concordancia con los resultados de la fig 2.4 sin necesidad del factor correctivo \$\int\$, debido a que para esta - forma de sección, el esfuerzo cortante se distribuye más uniformemente sobre el perímetro mojado (inciso 2.10.3).

2.5 Fórmulas usuales para canales con flujo turbulento

La mayor parte de los problemas que se presentan en la práctica son con - flujo turbulento y por esta razón se han desarrollado varias fórmulas para calcular las pérdidas por fricción en canales con ese flujo.

Todos los esfuerzos han sido encaminados a valuar el coeficiente C de Chezy en la ec 2.3b, de acuerdo con distintas fórmulas. Las más conocidas se presentan en latabla 2.2.

2 6 La fórmula de Manning - Strickler

De las fórmulas presentadas en la tabla 2,2, la de Manning-Strickler es – quizá la más conocida en la mayoría de los países occidentales y por esta razón merece aquí una serie de aclaraciones adicionales.

Su origen es completamente distinto de la ec (2.14) y es deseable hacer una comparación entre ellas para encontrar si existe diferencia en los resultados proporcionados por ambas. Su presentación gráfica se muestra en la fig 2.6 (ref 13) sobre papel logarítmico, la cual se puede aproximar a una recta de pendiente 1:3 con una ecuación del tipo:

$$f = k_1 \cdot \left(\frac{\epsilon}{R_h}\right)^{1/3} \tag{2.19}$$

radio 돈 estas fórmulas. Tabla 2.2. Fórmulas usuales para el cálculo del factor de fricción C de Chezy, hidráulico en m, S pendiente hidráulica.

	Autor	Fórmula	Observaciones
	Ganguillet y Kutter	$C = \frac{23 + \frac{1}{n} + \frac{0.00155}{5}}{1 + (23 + \frac{0.00155}{5}) \frac{n}{R_h}}$	Se aconseja para canales naturales para los cuales — sualmente conduce a resultados satisfactorios. Es — compleja y tiene la desventaja de que ocurren cambios grandes en C para cambios pequeños en n, donden es un coeficiente que depende de la rugosidad del canal según tabla 2,3
	Kutter	$C = \frac{100 \text{ V/R}_{\text{h}}}{\text{m} + \text{V/R}_{\text{h}}}$	Es una simplificación de la de Ganguillet y Kutter y por tanto más sencilla. m es un coeficiente de rugo sidad según la tabla 2,3.
	Bazin	$C = \frac{87}{1 + \frac{B}{\sqrt{R_h}}}$	Está basada en una buena cantidad de experiencias y es relativamente sencilla. B es un coeficiente de ru gosidad según la tabla 2,3,
-	Kozeny	C = 20 log Y + N _C	Ls análoga a la de los tubos y fue obtenida con base- en los resultados experimentales de von Misses y Bazin, Y es el firante hidráulico en m y N _C un coeficiente— de rugosidad según la tabla 2.3,
	Martínez	$C = 17.7 \log \frac{R_h}{d} + 13.6$	Fue obtenida de muchas mediciones en ríos de la Unión Soviética, d es el diámetro del grano del material en- el fondo del río en m y vale para 0,15 ≤ R₁ ≤ 2.25m, 0,00004 ≤ S ≤ 0,0039 y 0,004 ≤ d ≤ 0,25m (ref 12)
	Manning – Strickler	$C = \frac{Rh}{n} \frac{1/\delta}{n}$	Fue obtenida a partir de siete fórmulas diferentes baso das en ensayes de bazín y posteriormente verificada — por observaciones, Es una de las más utilizadas por su sencillez, n es un coeficiente de rugosidad según la tabla 2.14.
	Pavlovski	C = Rh m n, mismo coeficiente de rugasiclad de Manning	Considera que el expònente en la fórmula de Manning no es una constante sino que varía con la forma del ca na y la rugosidad como sigue Z=1,5 n-para R ₁

- 44 -

Tabla 2,3 Factores de rugosidad para las fórmulas de la tabla 2,2

_	Secciones cerradas parcialmente llenas	Ganguillet y	Kutter	Bazín	Kozeny
		<u> </u>	٤	В	Z Z
	Fierro fundido nuevo	0.012	0.20	90.0	
	Fierro fundido usado		0.25	0.12	
	Fierro colado	0.012	0.20		
	Barro vitrificado nuevo	0.017	0.30 - 0.35		
	Tubos de alcantarillado	0.017 - 0.020	0.30 - 0.35	0 22	
	Túneles de concreto pulido	c10°0 = 110°0	07.0	0	
=	Secciones abiertas				
	Madera cepillada	01000	0.15 - 0.20	90°0	
	A Laborator of markets and a second		0°30 - 0°32		!
	Magera de acubado Togoso Mampartería de Tadrillo hien acabada	0.013	0.25	0.16	70 - 76
	Mainposteria de radino significación		0.20 - 0.25	0.10 - 0.16	84 - 90
	Concreto pulido	0.012	0°50	0.11 - 0.22	9
	Concreto rugoso	0.017	0,65	0.45	70 - 90
	Piedra brasa bien acabada	0.017	0°65	71 71	00
	En tierra arroyos y ríos	0.025	200	74 - 75	
	En tierra con material grueso y plantas	0.00	C°7 - 0.7	1 ° 1 'S	
	Con cantos rodados	0,04 = 0.03	0.0	0.00	
	Con gran rugosidad de fondo y maleza	hasta 0.09			
	tupida				36 - 50
	Roca comodada				28 - 36
	Roca a volteo				000
	gruesa (10 a 15 cm)				38 = 42
	Grava media (5 a 10 cm)				42 - 46
	tina (2 a 3 cm)				00
	Cantos rodados (15 a 20 cm)				76 - 92

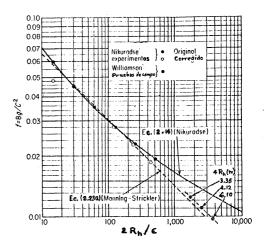


Fig 2.6. Factor de fricción para el flujo turbulento en canales

o bien, de la ec (2.5)

$$C = k_2 \left(\frac{R_h}{\epsilon} \right)^{1/6} \tag{2.20}$$

donde, $k_2 = (8 \text{ g/k}_1)1/2$, que confirma la ecuación de Manning y permite concluir que

$$n = k_2 \epsilon^{1/6}$$
 (2.21)

En efecto, Strickler en 1923 había ya obtenido la ecuación

$$n = 0.0134 \epsilon^{1/6} \tag{2.22}$$

Por otra parie, Williamson (ref 14) demostró experimentalmente que los - resultados de Nikuradse se aproximan bastante a la ecuación

$$f = \frac{8g}{C^2} = 0.113 \left(\frac{\epsilon}{R_h}\right)^{1/3}$$
 (2.23a)

o bien

$$C = \frac{R_h^{1/6}}{0.038 \ \epsilon^{1/6}}$$
 (2.23b)

esto es,
$$n = 0.01195 \epsilon^{1/4}$$
 (2.24)

que es practicamente la misma obtenida por Strickler (ec 2.22).

En ambas ecuaciones **E** se mide en **mm**. Cuando se trata de ríos con cauce de grava, **E** se puede sustituir por el tamaño medio del material d75,

Si la fórmula de Manning se sustituye en la de Chezy (ec 2,3 b), resulta la expresión más conocida siguiente

$$V = \frac{1}{n} R_h^{2/3} S^{1/2}$$
 (2.25)

La ecuación de Manning no es aplicable a la zona de transición a me—
nos que se acepte que n depende de Re. La frontera de transición está dada por el crite—
rio

Henderson concluye que existe una buena correspondencia entre la ec — (2.14) y la fórmula de Manning y que esta última es adecuada para flujo permanente turbulento en canales rugosos, si bien existe un rango de tamaños intermedios en canales, — para el cual la ec (2.14) es igualmente adecuada dentro de límites de seguridad normal—mente aceptables.

La selección de un valor de n significa realmente estimar la resistenciaal flujo en un canal dado. No es raro que el ingeniero piense que un canal tiene un úni
co valor de n para cada rugosidad. En realidad, el valor de n es muy variable y depende
de un gran número de factores. Su conocimiento básico es de gran utilidad para las diferentes condiciones de diseño. Los factores que ejercen mayor influencia sobre el coefi—
ciente de rugosidad tanto en canales naturales como artificiales se detallan en la ref 2 y
aquí se hace un breve resumen de los mismos.

a) Rugosidad superficial. Queda representada por el tamaño y forma de los granosdel material sobre el perímetro mojado, y a menudo se considera el único factor en la se lección de n. Una misma sección puede contener diferentes rugosidades, generalmentecon gravas gruesas en el fondo y finas en las orillas.

- b) Vegetación. Se puede considerar como una rugosidad superficial que también reduce la capacidad del canal y retarda el flujo. Su acción depende del tipo, altura, den sidad, distribución, etc.
- c) Irregularidad del canal. Comprende las irregularidades en el perímetro mojado y las variaciones en sección transversal, tamaño y forma a lo largo del canal.
- d) Alineación del canal. Las curvas con radios grandes proporcionan valores de nrelativamente bajos, mientras que las agudas con varios meandros incrementan a n. Scobey sugiere que el valor de n se aumente en 0.001 por cada 20° de curvatura.
- e) Sedimentación y erosión. Generalmente, la sedimentación puede cambiar de uncanal muy irregular a uno relativamente uniforme y reducir n, mientras la erosión produce lo contrario, esto es, modifica la irregularidad del canal y la rugosidad superficial.
- f) Obstrucciones. La presencia de pilas de puente, rejillas, etc., tienden a incrementar a n en una magnitud que depende de su tamaño, forma, número y distribución.
- g) Tirante y gasto. En la mayoría de los ríos, n disminuye al aumentar el tirante y el gasto. Cuando el tirante disminuye, emergen las irregularidades del fondo del canal y tienen un efecto más pronunciado. Los cambios de tirante están intimamente relacionados con el gasto.

En la tabla 2.4 se presenta una lista de valores de n para canales de varias clases y que ha sido propuesta por Chow. En ella se muestran valores mínimo, nor-mal y máximo, de mucha utilidad como guía para una selección rápida de n. En la -ref 2 Chow presenta una serie de fotografías de canales, útiles para una selección más --cuidadosa del valor de n.

En ocasiones, la sección de un canal puede tener porciones del períme-

Tipo y descripción del canal	Mínimo	Minimo Normal	Máximo					
A. CONDUCTOS CERRADOS DESCARGANDO PARCIALMENTE LLENOS)	4. Tubo vitrificado para drenes con juntas abiertos	410	9100	9	
A.1 Metales				g) Mampostería 1. De virricota	0.011	0.013	0.015	
a) Latón liso h) Acero	0.009	0.010	0.013	Acabados con mortero de ce- mento Montaines cantiarios cubiertos de la-	0.012	0.015	0.017	
2. Remachado	0.010	0.012 0.016	0.014	ma con curvas y conexiones i) Drenaje con fondo liso i) Acabados de cemento runoso	0.012	0.013	0.016	
2) Terro randado 1. Portado 2. Normal d) Hierro foriado	0.010	0.013	0.014	B. CANALES RECUBIERTOS O EN RE- LLENO	0.0	0.025	0:030	
1. Negro	0.012 0.013	0.014	0.015	B.1 Metales				
	0.017	0.019	0.021	a) Superficies de acero lis as 1. No pintadas 2. Pintadas	0.011	0.012	0.014	
A.2 No metales				b) Corrugadas	0.021	0.025		
a) Lucita b) Vidrio c) Cemento	0.008	0.009	0.010 0.013	B.2 No metales a) Cemento			- 49	40
1. Liso 2. Mortero	0.010	0.011	0.013	1. Superficie lisa 2. En mortero	0.010	0.011	0.013 L	
1. Alcantarillado recto y libre de escombros	0.010	0.011	0.013	1. Plana, no tratada 2. Plana, creosotada	0.010	0.012	0.014	
Alcantarillado con curvas, con nexiones y algunos escombros Acabado:	0.011	0.013	0.014	3. Rustica 4. Tablomes y tejamanil 5. Cubierta con tela	0.011	0.013	0.015	
4. Drenajes rectos con ventanas de inspección, entradas, etc.	0.013	0.015	0.014	c) Concreto 1. Acabado con llana metálica	0.011	0.013	0.015	
o. No acabados, en cimbra de acro	0.012	0.013	0.014	 Acabado con liana de madera Acabado con grava en el fon- 	0.013	0.015	0.016	
o. No acabados, en cimbra de madera lisa 7. No acabados en cimbra de ma.	0.012	0.014	0.016	4. Gracabar 5. Guniteado, buena sección	0.015	0.017	0.020	
e) Madera	0.015	0.017	0.020	6. Guniteado, sección ondulada7. Sobre roca bien excavada	0.018	0.022	0.025	
1. Duela 2. Laminada y tratada	0.010	0.012	0.014	Sobre roca, excavado irregular Plantifia de concreto. acabado con Ilana vi talindo do:	0.022	0.027		
Thos de barro cocido común Tubos de albañal virtificado	0.011		0.017	nana y cataus ue. 1. Mampostería cuidada sobre mortero	0.015	0.017	0000	
3. Tubos de albañal vitrificado con ventanas de inspección	0.013		0.017	2. Mampostería burda sobre mortero	0.017	0.020	0.024	
3. Mampostería junteada y apla- nada con mortero d€ cemeuto	0.016	0.000	200	d) Cortes en rocas		0	970	
4. Mampostería junteaca con niortero de cementa 5. Mampostería sona a colora	0.020			 1. Lisos y uniformes 2. Astillado e irregular e) Canales abandonados, hierbas y 	0.035	0.040	0.050	
e) Fondo de grava con lados de:	0.02			arbustos sin limpiar 1. Hierba densa, tan altar como €1	Ċ		9	
Concreto cimbrado Mampostería sobre mortero Mampostería sobre mortero	0.017	0.020	0.025	tirante 2. Fondo limpio, arbustos en los taludes	0.040	0.050	0.080	
f) Ladrillo 1. Vitricota	0.023		0.036	3. Igual al anterior con máximo escurrimiento	0.045	0.070	0.110	
2. Con mortero de cemento g) Mampostería	0.012	0.013	0.015 0.018	4. Denso de arbustos, altos niveles de escurrimiento	0.080	0.100	0.140	
1. Junteada con mortero 2. Seca h) Piedra labrada	0.017 0.023 0.013	0.025	0.030	D. CAUCES NATURALES D.1 Arrovos (ancho de la superficie libre del				
// Astarto 1. Liso 2. Rugoso	0.013			agua en avenidas < 30 m)				
Converta vegetal Converta vegetal	0.030		0.500	 Limpio , rectos, sin deslaves ni remansos profundos 	0.025	0.030	0.033	
DOS EN Tierra control of DRAGA.				2. Igual al anterior pero mas ro- cosos y con hierba 2. I impis	0.030	n 035	50 -	
J. recto y uniforme 1. Limpio recientemente termi- nado	. 0			o. Employ, curvo, agunas megar- laridades del fondo 4. laual al anterior, alco de hier-	0.033	0.040	0.045	
2. Limpio, después de intempe- rizado	0.016	0.018	0.020	bay roca 5. Igual al anterior pera menor	0.035	0.045	0.050	
S. Grava, sección uniforme y limpia Con poco pasto v noca hierha	0.022	0.025	0.030	profundidad y secciones poco eficientes 6 Inual rupe el 4 nero más rocas	0.040	0.048	0.055	
b) Tierra, con curvas y en régimen len-	0.022	0.027	0.033	7. Tramos irregulares con hierba y estanques profundos	0.050	0.070	0.080	
1. Sin vegetación 2. Pasto y algo de hierba 3. Hierba densa o plantas anuá.	0.023	0.025	0.030 0.033	8. Tramos con mucha hierba, estanques profundos, o cauces de avenidas con raíces y plan-				
ticas un anales profundos 4 Plantila de tierra y mampos-	0.030	0.035	0.040	tas subacuáticas b) Corrientes de montañas, sin vegeta	0.075	0.100	0.150	
terra en los lados. 5. Plantille rocosò, y hierba en los bordos	0.028	0.030	0.035	ción en el cauce; taludes muy pen- dientes, árboles y arbustos a lo lar- no de las máraenes que quedan su-				
6. Paentifleempedrado, y bordos límpios	0.020	0.035	0.040	mergidas en las avenidas 1. Fondo de: grava, boleo y algu-				
c) Excavado o dragado en línea recta 1. Sin vegetación 2. Poros arburdos en La Land	0.025	0.028	0.033	nos cantos rodados 2. Fondo de: boleo y grandes	0.030	0.040	0.050	
4. FUCUS artitistics en los bordos	0.035	0.050	0.060	rocas	0.040	0.050	0.070	

0.040

0.025

D.2 Planicies de avenida		
a) Pastura sin arbustos		
1. Pasto bajo	0.025	0.03
2. Pasto alto	0.030	300
b) Areas cultivadas		5
1. Sin cosecha	0.00	0.03
2. Cosecha en tierra labrada v		5
pradera	0.025	0.03
3. Cosecha de campo	0.030	0 04
c) Arbustos		5
1. Arbustos diseminados y mu-		
cha hierba	0.035	0.05
2. Pocos arbustos y árboles, en		
invierno	0.035	0.05
3. Pocos arbustos y árboles, en		i
verano	0.040	0.06
4. Mediana a densa población de		
arbustos, en invierno	0.045	0.070
5. Mediana a densa población de	2	
arbustos, en verano	0.070	0 100
d) Arboles		3

tro mojado con rugosidades distintas, lo que implica diferentes valores de n para cada por ción. En este caso se puede seguir aplicando la fórmula de Manning si se calcula un valor de n equivalente y representativo de todo el perimetro mojado de la sección. Para ello existen diferentes criterios. Se puede suponer que cada porción P_1 , P_2 , P_3 , ..., P_n del perimetro mojado, con coeficientes de rugosidad n_1 , n_2 , n_3 , ..., n_n , actúa sobre una parción del área hidráulica A_1 , A_2 , A_3 , ... Horton y Einstein suponen que cada parte del área tiene la misma velocidad media de la sección completa, esto es, -- $V_1 = V_2 = \ldots = V_n = V$ y que entonces el coeficiente de rugosidad equivalente se pue de obtener de la ecuación :

$$n = \begin{bmatrix} \sum_{i=1}^{n} (P_{i} n_{i} 1.5) \\ P \end{bmatrix}^{2/3} = \frac{(P_{I} n_{I} 1.5 + P_{2} n_{2} 1.5 + \dots + P_{n} n_{n}}{P^{2/3}}$$
(2.26)

Pavlosvki, Mühlhofer y Banks suponen que la fuerza total resistente al flujo es igual a la suma de las mismas fuerzas desarrolladas sobre cada porción del per<u>ī</u>

metro y que:

$$n = \frac{\left[\sum_{i=1}^{n} {(P_{i} \ n_{i})^{2}}\right]^{1/2}}{P^{1/2}} = \frac{(P_{1} \ n_{1}^{2} + P_{2} \ n_{2}^{2} + \dots + P_{n} \ n_{n}^{2})}{P^{1/2}} \frac{1/2}{(2.27)}$$

Lotter supone que el gasto total del flujo es igual a la suma de losgastos de las porciones de área y que:

$$n = \frac{\frac{P R_{h}^{5/3}}{\sum_{i=1}^{n} (\frac{P_{i} R_{hi}^{5/3}}{n_{i}})} = \frac{\frac{P R_{h}^{5/3}}{P_{1} R_{h1}^{5/3}} + \frac{P_{2} R_{h2}^{5/3}}{n_{2}} + \cdots + \frac{P_{n} R_{hn}^{5/3}}{n_{n}}} (2.28)$$

donde R_{h1} , R_{h2} , ..., R_{hn} son los radios hidráulicos de las porciones de área y para las secciones sencillas se puede aceptar que:

$$R_{h_1} = R_{h_2} = \dots = R_{h_n} = R_h$$

Hasta ahora no existen resultados que indiquen mayor precisión de un

criterio respecto al otro.

2.7 Cálculo del flujo uniforme

Como en las tuberías, en el cálculo de canales con flujo uniforme se pue den presentar problemas de revisión o de diseño. Los problemas de revisión consisten en - calcular el gasto a través de una sección de geometría, rugosidad y pendiente conocidas. Los problemas de diseño consisten en calcular la geometría de la sección dada la pendiente y el gasto que circula, o bien, dada la geometría y el gasto, calcular la pendiente ne cesaria.

Cualquiera que sea el tipo de problema, son dos las ecuaciones que permiten el diseño del canal: la ecuación de continuidad

$$Q = A V (2.29)$$

y la fórmula de Chezy para la fricción

$$V = C R_b^{1/2} S^{1/2}$$
 (2.30)

El gasto se expresa entonces en la forma

$$Q = AV = CA R_h^{1/2} S^{1/2} = K S^{1/2}$$
 (2.31)

donde el término

$$K = C A R_h^{1/2}$$
 (2.32)

se conoce como "<u>factor de conducción</u>" de la sección del canal y es una medida de la ca pacidad de transporte al depender directamente del gasto.

Si se usa la fórmula de Manning, $C = R_h^{1/6}/R_f^2$ y $K = \frac{A R_h^{2/3}}{R}$ (2.33.a)

La expresión

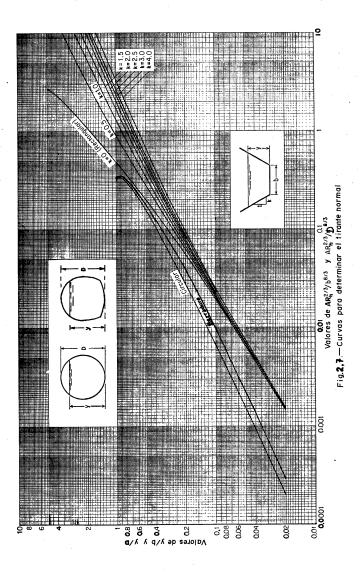
$$Z_n = A R_b^{2/3} = n K$$
 (2.33.b)

se conoce como el módulo de sección para el cálculo de flujo uniforme y de la ec (2.32) -

también se expresa como sigue:

$$A \, R_h^{2/3} = \frac{n \, Q}{\sqrt{S}} \tag{2.34}$$

El segundo término de la ec (2.34) depende de n Q y S, pero el primero exclusivamente de la geometría de la sección. Esto demuestra que para una combinación particular de n Q y S hay un tirante único y_n Ilamado <u>normal</u>, con el cual se establece el flujo uniforme, siempre que el módulo de sección sea función continua y creciente del – tirante y. La condición recíproca también se cumple, es decir, dados y_n, n y S hay un-único gasto Q con el cual se establece el flujo uniforme y que se conoce como <u>gasto normal</u>.


Con el fin de tener una relación sin dimensiones, es conveniente dividir ambos miembros de la ec (2.34) entre una dimensión característica de la sección que pue de ser el ancho de plantilla b si la sección es trapecial o rectangular, o bien el diámetro D si la sección es circular o herradura trabajando parcialmente llena. La dimensión característica debe tener como exponente a 8/3 para obtener efectivamente una relación — sin dimensiones. Así, de la ec (2.34) para las secciones rectangulares y trapecial se tiene:

$$\frac{A R_h^{2/3}}{b8/3} = \frac{n Q}{b8/3 S^{1/2}}$$
 (2.35)

para las secciones circular o herradura:

$$\frac{A R_h^{2/3}}{D^{8/3}} = \frac{n}{D^{8/3} S^{1/2}}$$
 (2.36)

Con el fin de simplificar los cálculos, en la fig 2.7 se presentan las curvas que relacionan cualquiera de los dos términos de las ecs 2.35 y 2.36 con los valores y/b o y/D para las distintas secciones indicadas. En estas curvas, k representa la designación del talud para la sección trapecial.

En ciertos problemas, resulta conveniente tener una precisión mayor que la dada por la fig 2.7. Para secciones circular y herradura se recomienda utilizar las tablas 2.5 y 2.6, donde se muestran las propiedades geométricas más importantes de ambassecciones.

2.8 Canales de sección compuesta

En ocasiones, la sección transversal de un canal puede estar compuesta – de varias subsecciones de forma y rugosidad distinta. Por ejemplo, la sección de un canal aluvial o de la rectificación de un río en una ciudad, ambos expuestos a avenidas, consisten comunmente de un canal principal, generalmente menos rugoso y más profundo y por lo mismo con velocidad media más alta, y los laterales.

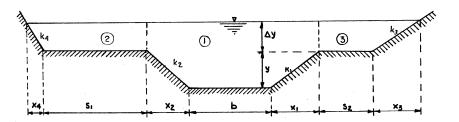


Fig 2.8 Canal de sección compuesta

El cálculo de una sección compuesta se realiza aplicando separadamente la fórmula de Manning para cada subsección y obteniendo la velocidad media de la misma y el gasto correspondiente. La suma de estos gastos proporciona el total.

 $Si\ A_1,\ A_2,\ \dots,\ A_n\ \ representan\ las\ áreas\ de\ cada\ subsección,\ de\ la\ ec$ (2.31), las velocidades medias respectivas son

$$V_1 = \frac{K_1}{A_1} S^{1/2}$$
, $V_2 = \frac{K_2}{A_2} S^{1/2}$..., $V_n = \frac{K_n}{A_n} S^{1/2}$

donde K₁, K₂, ..., K_n son los factores de conducción de las subsecciones y S la pen-

Tabla 2,5. Elementos geométricos en canales de sección circular.

diámetro tirante

radio hidráulico aceleración de gravedad <u>դ</u> ը

۵ >

el crífico

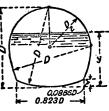
gasto cuanto el tirante y

Ø

E.	A		0.9502	7296.0	8786.0	1.0025	1,0204		4.0386	1.05 7/	1.0759	7,0952	8717	•	1.1349	77777	1767	1.1985	7.2230		1,2443	1.2685	1. 2938	1.3203	7.3482		1.3777	7.4092	1.4432	1.4800	1.5204	1	1.5655	1.6166	6529.1	1.7465	1.834)		1.9425	2.1110	2.3758	2.9400	1
G	19 052	,	0.4188	0.4309	0.4437	0.4566	0.4694		0.4831	1967	0.5100	0.5248	0.5392		0.5510	2035 0	0.85.0	0 6011	0 6177		0.6347	0.6524	0 6707	2089 0	8001 O		0 7307	0 7528	0,7751	910% 0	0.8285		0 8586	0.8917	0.9292	0.9725	1.0242		1.0888	1.1752	1.3050	1.5554	8
4 1735	D8/3		0.2407	0.2460	0.2510	0 2560	0.2608		0.2653	0.2702	0.2751	0.2794	0.2810		0.2888	0 2930	0 2069	9008 0	0.3045		0.3082	0.3118	0 3151	3 H N 3	0 3212		2 22 0	1921 0	9838 0	0 3307	1225	9000	93.38	0.3345	0.3350	0.3353	0.3349		0.3349	0.3322	0.3291	0.3248	0.3117
P.	A		0 2800	0.2917	0.2035	0.2950	0 2962		0.2973	0.2984	0.2995	9008 0	0 3017		0 3025	0.3032	0.3037	0.3010	0.3012		0 3044	0.3043	0.3011	0.3038	0.3033		920% 0	0 3017	8008	0.2996	9080		2963	0.2914	0.2922	0.2896	0 2864		0.2830	0.2787	0.2735	0.2665	0.2500
7	D2		0.5499	0.5594	0.5687	0.5780	0.5872		0.5964	0.6054	0.6143	0.6231	0.6318		0.6404	0.6189	0.6573	0.6655	0.6736		0.6815	0.6893	0.6969	0.7043	0.7115		0.7186	0.7254	0.7:320	0.7380	0 7445		0.7504	0.7560	0.7612	0.7662	0.7707		0.7749	0.7785	0.7816	0.7841	0.7854
y	۵	000	0.00	0.00	90.0	0.69	0.70		0.71	0.72	0.73	0.74	0.75		92.0	0.77	0.78	0.79	08'0		0.81	0.82	0.83	0.84	0.85		98.0	0.87	0.88	0.80	0:0		16.0	0.92	0.93	0.94	0.95		96.0	0.97	0.08	0.99	1.00
E min	A		0.444	0.4361	0.4502	0.4643	0.4784		9764.0	8905.0	0.5211	0.5354	0.5493		0.564)	0.5786	0.5931	9.6076	0.6223		0.6369	£159.0	0.6665	0.6814	0.6964		0.7114	0.7265	0.7417	0.7570	0.7724		0.7879	0.8035	6.8193	0.8351	0.85%		47.70 V	7,000	2000	0.9165	6.0222
G	7/5G B5	1000	0.0381	0.1044	0.1107	0.1172	0.1241		0.1310	0 1381	0.1453	0.1528	0.1603		0.1682	0.1761	0.1844	0.1927	0.2011		0.2098	0.2186	0.2275	0.2366	0.2459		0.2553	0.2650	0.2748	0.2848	0.2949		0.3051	0.3158	0.3263	0.3373	0 3484	0.0101	0.3560	0.3710	0.3830	0.3945	0.4066
A R25	D8/3	0.00	0.0050	0.000	0.0736	0.0776	0.0820		0.0864	0.0909	0.0955	0.1020	0.1050		0.1100	0.1147	0.1196	0.1245	0.1298		0.1348	0.1401	0.1452	0.1505	0.1558		0.1610	0.1664	0.1715	0.1772	0.1825		0,1878	0.1933	0.1987	0.2041	0 2002	7007.0	0.2146	0.2199	0.2252	0.2302	0.2358
R	q	242	0.1/33	0.1901	0.1848	0.1891	0.1935		0.1978	0.2020	0.2061	0.2102	0.2142		0.2181	0.2220	0.2257	0.2294	0.2331		0.2366	0.2400	0.2434	0.2467	0.2500		0.2531	0.2561	0.2591	0.2620	0.2649		0.2676	0.2703	0.2728	0.2753	0 2776		0.2797	0.2818	0.2030	0.2860	0.2881
V	D5	000	0.2074	0.000	0.2200	0.2355	0.2450		0.2546	0.2642	0.2739	0.2836	0.2934		0.3032	0.3132	0.3229	0.3328	0.3428		0.3527	0.3627	0.3727	0.3827	0.3927		0.4027	0.4127	0.4227	0.4327	0.4426		0.4526	0.4625	0.4723	0.4822	0 4920	2	0.5018	0.5115	0.5212	0.5308	0.5404
n	a'	6	0.01	0.02	0.00	0.34	0.35		0.36	0.37	0.38	0.39	0.40		0.41	0.45	0.43	0.44	0.45		0.46	0.47	0.48	0.49	0.50		0.51	0.52	0.53	0.54	0.55		0.56	0.57	0.58	0.59	0 60	3	0.61	0.62	0.03	0.64	0.65
Emín	А	66.0.0	0.0267	0.0401	0.0534	0.0668		0.0803	0.0937	0.1071	0.1206	0.1341		0.1476	0.161)	0.1746	0.1882	0.2017		0.2/53	0.2289	J. 2426	0.2562	0,2699		0.2836	0.2973	0.377	0.3248	0.3387		0.3753	0.3663	0.3802	0.3942	0.4081							
G	19 Dat	0.0001	0 0001	0.0010	0 0017	0 0027		0 0033	0 0053	6900 0	7800.0	0 0107		0 0129	0 0153	6210 0	0.0217	0 0238		0.0270	0.0304	0 0339	0.0378	0.0418		0.0160	0.0203	0.0549	0.0597	0.0646	1000	0.0697	0.0751	0.0805	0.0862	0.0921							
A.R.;	Carl	0.000	2000.0	6,0,0	COU.0.	0.0015		0.0022	0.00.31	0.0310	0.0052	0,0935	-	0.0020	0.0003	: :: :: ::	E 10.0	0.0152		0.0173	0.0196	0.0220	0.0247	0.0273	000	1000.0	0.0555	0.0339	0.0394	0.0424	1910	0.040	0.0437	0.0336	0.0571	0.0610							
5	3	0,000	0 0107	0 000	0.0202	02	- 0000	0.0389	0.0151	0.0513	0.0574	0.0635		0.0695	0.0754	0.0813	0.0871	0.0929		0.0986	0.1042	0.1097	0.1152	0.1206	2010	0.123	0.1312	1001.0	0,1416	0.1465		0.1510			0.1662	4							
416		0 0037	0.0069	0105	2710		010	2010.0	24-20	1.0294	0.0350	6010.0		0.0470	0.0534	0090	9990.0	0.0739	-	0.0811	0.0885	0.0961	6501	8111.	9	6611.	1821	1303	1449	- 1939		1711		_	-	-							

Tabla 2.6 Elementos geométricos en canales de sección de herradura.

Diámetro de la herradura


tirante

Radio hidráulico

aceleración de gravedad

gasto cuando el tirante y es el crítico.

Emin energia específica mínima

N D	4	-	2/2	_		1		1			
D	$\frac{A}{D^2}$	R _h	A R _h ^{2/3}	Q /q D ^{6/2}	Emin	<u>y</u>	$\frac{A}{D^2}$	R _h	AR _h ^{2/3}	Q \(\overline{g} D^{5/2} \)	Emin
			Dens	49 D	D				₽	19 D	Ð
	0.0010	0.0000	0.00607	6.000⊈		0.51	0.4466	0.2602	0.19202	0.2983	.7334
0.01	0.0019	0.0066	,	0.000g	0.0133	. 52	. 4566	. 2630	.18343	.3085	
. 02	. 0053	.0132	0.00030	0.0014	.0267	. 53	. 4666	. 2657	.19284	.3188	.7485
.03	. 0097	.0198	0.00071	0.0014	.0400	.54	. 4766	. 2683	.19826	. 3293	
.04	. 0150	. 0204	0.00133	0.0025	.0668	. 55	4865	. 2707	.20332	.3400	.7791
. 05	. 0209	. 0329	0.00215	0.0036			. 1000	.2707	,20348	.5400	.1743
.06	. 0275	. 0394	0.00318	0.0055	.0801	. 56	. 4965	. 2733	.20910	3509	18100
. 07	. 0346	. 0459	0.00443	.0075	.0935	. 57	. 5064	. 2757	.21451	. 3619	.8257
.08	. 0421	. 0524	0.00589	. 0098	.1069	. 58	5163	. 2781	.21997	.3731	.8415
.09	. 0502	. 0590	0.00761	.0124	. 1205	. 59 . 60	. 5261 . 5359	. 2804	.22538	.3845	.8574
. 10	. 0585	. 0670	0.00965	. 0155	.1351	.∞	. 5359	. 2824	.13067	. 3961	.8735
. 11	. 0670	. 0748	0.01190	.0186	.1497	. 61	. 5457	. 2844	.23600	4079	8197
. 12	. 0753	. 0823	0.01425	.0224	.1643	. 62	. 5555	. 2864	.24/36	.4199	.9061
. 13	. 0639	. 0895	0.01679	.0262	1789	. 63	. 5651	. 2884	.24667	.4321	.9226
.14	0925	. 0964	0.01945	. 0302	.1934	. 64	. 5748	. 2902	-251950	,4445	.9394
.15	. 1012	. 1031	0.02225	.0344	.2079	. 65	. 5843	. 2920	.25717	.4571	.9563
			0.02521		.2224	.66	. 5938	. 2937	.26237		9734
. 16	.1100	. 1097	0.02827	.0388		.67	. 6033	. 2953	.26753	.4699 .4829	9908
.17	. 1188	. 1161	0.02045	.0434	.2369	.68	. 6126	. 2967	.27251	.4962	1.0083
.18	. 1367	. 1222	0.03476	.0532		. 69	. 6219	. 2981	.17752	. 5093	2920-1
.20	. 1457	. 1262	0.03475	.0532	.2658	70	. 6312	. 2994	.28249	.5234	1.0443
.20	145/	. 1341	0.036.7	.0584	.2803						
. 21	. 1549	. 1398	0.04172	.0637	.2947	. 71	. 6403	. 3006	.28733	. 5375	1.0658
. 22	. 1640	. 1454	.04535	.0692	.3091	.72	. 6493	. 3018	.24214	.55/8	1.0812
. 23	.1733	.1508	.04910	.0749	.3236	. 73	. 6582	. 3028	.29680	.5664	1.1007
. 24	. 1825	. 1560	-05289	.0808	.3380	. 74	. 6671	. 3036	.30134	.5813	1.1203
. 25	. 1919	. 1611	.05682	.0868	. 3524	. 75	. 6758	. 3044	18205.	.5966	1.1408
. 26	. 2013	. 1662	.06085	.0930	.3669	. 76	. 6844	. 3050	.31011	.6122	1,1606
. 27	2107	. 1710	.06491	.0994	.38/3	.77	. 6929	. 3055	.31430	.6282	1.1816
. 28	. 2202	.1758	06910	.1059	.3958	. 78	. 7012	. 3060	-31841	.6447	1,2037
. 29	. 2297	. 1804	.07334	.1126	.4102	.79	. 7094	. 3064	.32242	.6616	1,2254
.30	. 2393	. 1850	.07769	.1194	.4247	. 80	. 7175	3067	. 32634	.6791	1.2484
			1			. 81	. 7254	. 3067			
. 31	. 2489	. 1895	.08212	.1264	. 439 Z	. 82	. 7254	. 3067	.32990	.6971	1.2723
. 32	. 2586	. 1938	.0866.0	.1336	.4537	. 83	. 7408	.3064	.33336	.7158	1.2971
. 33	. 2683	. 1981	.09118	.1409	.4682	. 84	. 7482	. 3061	.33669	.3351	1.3502
. 34	. 2780	. 2023	.09260	.1484	. 4827	.85	. 7554	. 3056		.7554	1.3386
. 35	. 2878	.2003	10048	.1500	.4972	٠	. 1001		.34273	.7765	
. 36	. 2975	. 2103	.10521	.1638	.5118	. 86	. 7625	. 3050	.34549	.7987	1.4094
. 37	. 3074	. 2142	.11005	.1718	.5263	. 87	. 7693	. 3042	.34796	.8223	1.4419
. 38	. 3172	. 2181	.11493	.1798	.5409	.88	. 7759	. 3032	.35018	. 8473	1.4769
. 39	. 3271	. 2217	-11982	.1881	. 5555	. 89	. 7823	. 3020	-35214	.8742	1.5151
. 40	. 3370	. 2252	.12474	.1965	.\$702	90	. 7884	. 3005	.35374	.9033	1,5570
. 41	. 3469	. 2287	.12973	.2050	.5849	. 91	. 7943	. 2988	. 3 5 50 1	.9351	1.6039
. 42	. 3568	2322	.13479	,2137	.5995	. 92	. 7999	. 2969	.00200	.9706	1.6571
. 43	. 3667	. 2356	.13988	.2225	.6143	. 93	. 8052	. 2947	.35658	1.0107	1.7189
. 44	.3767	. 2390	.14508	.2315	.6290	. 94	. 8101	. 2922	35472	1.0573	1.7928
. 45	. 3867	. 2422	.15025	.2406	.6438	. 95	. 8146	. 2893	.35632	1.1130	1.8845
	2000					.96	. 8188	. 2858	35500		2.0046
. 46 . 47	. 3966	. 2454	.15545	.2499	.6586	.97	. 8224	. 2838	.35332	1.1827	
. 48	. 4166	. 2514	.16594	.2688	.6735 .6884	. 98	. 8256	. 2766	,35049	1.2762	2.1753
. 49	. 4266	. 2544	.17128	.2785	,7033	.99	. 8280	. 2696	15572	1.6879	2,4541
. 50	. 4366	. 2574	.17667	.2683	7183	1.00	. 8293	. 2538	-33243		3.0704
. DU											

diente general del canal.

El gasto total será

$$Q = VA = \sum_{i=1}^{n} V_i A_i = \sum_{i=1}^{n} K_i S^{1/2}$$

$$Q = (\sum_{i=1}^{n} K_i) S^{1/2}$$
(2.37)

y la velocidad media de toda la sección

$$V = \frac{\left[\sum_{j=1}^{n} K_{i}\right] s^{1/2}}{A}$$

Los coeficientes de distribución de velocidades « y /3 de la sección total se pueden calcular a partir de las velocidades medias en cada subsección.

De su definición

En la misma forma,

$$\beta \approx A \left[\frac{\sum_{i=1}^{n} (\beta_{i} \kappa_{i}^{2}/A_{i})}{(\sum_{i=1}^{n} \kappa_{i})^{2}} \right]$$
 (2.39)

En el cálculo del perímetro mojado de la sección central o de las latera eles normalmente no se incluye ΔY debido a que sobre la intercara entre ambas se tiene - un esfuerzo cortante más pequeño que en el caso de la frontera sólida del canal.

Problema 2.2 Un canal rectangular de cemento pulido y ancho de plantilla b = 2 m — tiene una pendiente S = 0.000126. b) Calcular el gasto que conduce para un tirante —— y = 1.50 m. b) Calcular el gasto para y = 0.50 m y S = 0.008. Utilizar la fórmula de — Manning Strickler en ambos casos.

Solución a. El área, perímetro y radio hidráulico son $A = 2 \times 1.5 = 3 \text{ m}^2$ $P = 2 + 2 \times 1.5 = 5 \text{ m}$

$$R_h = \frac{3}{5} = 0.6 \text{ m}$$

De la fórmula de Manning, para n = 0.011, la velocidad vale

$$V = \frac{1}{0.011} (0.6)^{2/3} (0.000126)^{1/2} = 0.726 \text{ m/seg}$$

y el sasto

$$Q = 3 \times 0.726 = 2.178 \text{ m}^3/\text{seg}$$

Solución b. Haciendo cálculos análogos, se obtiene:

$$A = 2 \times 0.5 = 1 \text{ m}^2$$

$$P = 2 + 2 \times 0.5 = 3 \text{ m}$$

$$R_h = \frac{1}{3} = 0.33 \text{ m}$$

$$V = \frac{1}{0.011}(0.33)^{2/3} (0.008)^{1/2} = 3.909 \text{ m/seg}$$

$$Q = 1 \times 3.909 = 3.909 \text{ m}^3/\text{seg}$$

Problema 2.3 Calcular el gasto en un canal de sección trapezoidal con b=2 m de ancho de plantilla, y=1.20 m de tirante, taludes k=2, pendiente S=0.000667 y cuyas paredes están construídas de concreto rugoso bien acabado. Utilizar las fórmulas de Kuter, Bazin, Kozeny y Manning-Strickler para comparar resultados.

Solución. Los elementos geométricos de la sección son:

A =
$$(2 + 2 \times 1.2) \cdot 1.2 = 5.28 \text{ m}^2$$

P = $2 + 2 \sqrt{1 + 2^2} \cdot 1.2 = 7.367 \text{ m}$
 $R_h = \frac{5.28}{7.367} = 0.717 ; R_h^{1/2} = 0.847$
 $R_h^{1/6} = (0.717)^{1/6} = 0.946$
 $S^{1/2} = (0.000667)^{1/2} = 0.02583$

a) De la tabla 2.3, para la fórmula de Kutter, m = 0.65

$$C = \frac{100 \times 0.847}{0.65 + 0.847} = 56.58$$

De la fórmula de Chezy (ec 2.3.b)

$$V = 56.58 \times 0.847 \times 0.02583 = 1.238 \text{ m/seg}$$

 $Q = 5.28 \times 1.238 = 6.536 \text{ m}^3/\text{seg}$

b) Para la fórmula de Bazin, (de la tabla 2.3) B = 0.45

$$C = \frac{87}{1 + \frac{0.45}{0.847}} = 56.81$$

$$V = \frac{56.81}{56.58} \times 1.238 = 1.243 \text{ m/seg}$$

$$Q = 5.28 \times 1.243 = 6.554 \text{ m}^3/\text{seg}$$

c) Para la fórmula de Kozeny, de la tabla $2.3~N_{\rm c}=60.~$ El ancho de la superficie libreen la sección vale

$$B = b + 2 k y = 2 + 2 \times 2 \times 1.2 = 6.80 m$$

y el tirante hidráulico

$$Y = \frac{A}{B} = \frac{5.28}{6.8} = 0.776 \text{ m}$$

De la fórmula de Kozeny (tabla 2.2)

$$e = 20 \log 0.776 + 60 = -2.2 + 60$$

C = 57.8

$$V = \frac{57.8}{56.58} \times 1.238 = 1.265 \text{ m/seg}$$

$$Q = 5.28 \times 1.265 = 6.678 \text{ m}^3/\text{seg}$$

d) Para la fórmula de Manning-Strickler, n = 0.017 (concreto no terminado)

$$C = \frac{0.946}{0.017} = 55.647$$

$$V = \frac{55.647}{56.58} \times 1.238 = 1.218 \text{ m/seg}$$

 $Q = 5.28 \times 1.218 = 6.429 \text{ m}^3/\text{seg}$

Problema 2.4 Una galería circular (fig 2.9) de cemento pulido liso de 2 m de diámetro y 1.50 m de tirante debe conducir un gasto de 2.6 m³/seg. Calcular la pendiente necesaria para que el flujo sea uniforme.

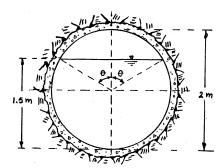


Fig 2.9. Sección del túnel del problema 2.4.

Solución. Se tiene que $cos \theta = \frac{1}{2}$, $\theta = 60^{\circ}$

El área, perímetro y radio hidráulico valen:

$$A = \frac{D^2}{4} \left(\frac{2\pi}{3} + \frac{\sqrt{3}}{4} \right) = 2.527 \text{ m}^2$$

$$P = 2 \pi \frac{D}{2} = 4.189 \text{ m}$$

$$R_h = \frac{A}{P} = 0.603 \text{ m}$$

$$R_b^{2/3} = 0.714$$

La velocidad media

$$V = \frac{Q}{A} = \frac{2.6}{2.527} = 1.029 \text{ m/seg}$$

Para n = 0.011, de la fórmula de Manning la pendiente debe ser:

$$S = (\frac{V_n}{R_h 2/3})^2 = (\frac{1.029 \times 0.011}{0.714})^2 = 0.000251$$

Problema 2.5 En el canal mostrado en la fig 2.10 se desea salvar la barranca mediante un sifón invertido cuya geometría se muestra. Determinar el desnivel Δ_z necesario para que el gasto circule en la tubería sin producir remanso hacia aguas arriba. La seccióndel canal es rectangular de 3.00 m de plantilla, su tirante normal $y_n = 1.075$ m y su pendiente S = 0.001. El coeficiente de fricción de Manning en el canal es n = 0.0135. La longitud total del tubo es de 200 m y este es de concreto bien acabado, siendo n = 0.012.

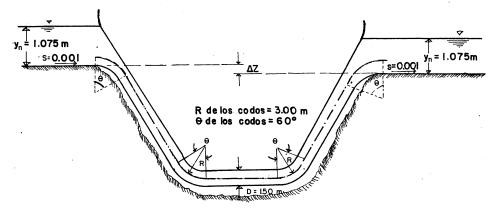


Fig. 2.10 Ilustración del problema 2.5

Solución。

Los elementos geométricos del canal son

$$A = 3.00 \times 1.075 = 3.225 \text{ m}^2$$

$$P = 3.00 + 2 \times 1.075 = 515 \text{ m}$$

$$R_h = \frac{3.225}{5.20} = 0.62 \text{ m}$$

$$R_h^{2/3} = 0.727$$

$$S^{1/2} = 0.0316$$

De la fórmula de Manning

$$Q = \frac{A}{n} R_h^{2/3} S^{1/2} = \frac{3.225 \times 0.727 \times 0.0316}{0.0135} = 5.488 \text{ m}^3/\text{seg}$$

que es el gasto que debe circular por el sifón.

De la ecuación de la energía antes y después del sifón resulta

$$\Delta z + y_n + \frac{V_n^2}{2g} = y_n + \frac{V_n^2}{2g} + \sum_{h} h$$

$$\Delta_{7} = \sum_{i} h_{i}$$

Esto es, el desnivel Δ_z debe ser igual a las pérdidas en el sifón. La -velocidad y carga de velocidades en el mismo son

$$V = \frac{5.488}{0.785 (1.5)^2} = 3.106 \text{ m/seg}$$

$$\frac{V^2}{2g} = 0.492 \text{ m}$$

Con $R_h = D/4 = 0.375 \, \mathrm{m}$, de la fórmula de Manning la pérdida por fricción en el sifón vale

$$h_f = (\frac{V_n}{R_L 2/3})^2 L = (\frac{3.106 \times 0.012}{(0.375) 2/3})^2 200 = 1.027 m$$

La pérdida de los cuatro cambios de dirección es

$$h_c = 4 \times 0.24 \frac{60}{90} \times 0.52 = 0.333 \text{ m}$$

y el desnivel vale

$$\Delta z = 1.027 + 0.333 = 1.36 \text{ m}$$

Problema 2.6 Un canal de sección trapecial revestido de concreto pulido (n = 0.015) – tiene un ancho de plantilla b = 2.50 m, taludes k = 1.5 y pendiente S = 0.00075. --- Calcular el tirante para que conduzca un gasto Q = 20 m³/seg en flujo uniforme.

Solución. De los datos se obtiene que:

$$A = (b + ky) y = (2.5 + 1.5 y) y$$

$$P = b + 2 \sqrt{1 + k^2}$$
 $y = 2.5 + 3.6$ y $\sqrt{S} = \sqrt{0.00075} = 0.0274$

De la fórmula de Manning

$$Q = 20 = \frac{A}{0.015} R_h^{2/3} 0.0274 = 1.826 A R_h^{2/3}$$

Por lo tanto

$$A R_h^{2/3} = 10.954$$

$$\frac{A R_h^{2/3}}{b^{8/3}} = \frac{10.954}{(2.5)8/3} = 0.951$$

De la fig 2.7, con k = 1.5, $y_n/b = 0.76$, por tanto

$$y_n = 0.76 \times 2.5 = 1.90 \text{ m}$$

que sería el tirante normal con la precisión dada por la fig 2,7. Por un procedimiento de tanteos se podría aproximar mejor dicho resultado, como se indica en la siguiente tabla

y A P Rh
$$_{(m)}$$
 $_{(m^2)}$ $_{(m)}$ $_{(m)}$

luego entonces of tirante correcto es $y_n = 1.915 \text{ m}$.

Problema 2.7 Un canal trapecial excavado en tierra tiene un tirante $y_n = 1.4 \text{ m}$, — talud k = 2, pendiente S = 0.004 y debe conducir un gasto de $8 \text{ m}^3/\text{seg}$. Calcular su – ancho de plantilla.

Solución.

Los elementos geométricos son

$$A = (b + ky) y = (b + 2 \times 1.4) 1.4 = (b + 2.8) 1.4$$

$$P = b + 2 \sqrt{1 + k^2}$$
 $y = b + 2 \sqrt{1 + 4}$ $1.4 = b + 6.26$
 $\sqrt{S} = \sqrt{0.0004} = 0.02$

Para un canal en tierra n = 0.025 y de la fórmula de Manning

$$Q = \frac{A}{n} R_h^{2/3} S^{1/2} = \frac{0.02}{0.025} A R_h^{2/3} = 0.8 A R_h^{2/3}$$

$$A R_h^{2/3} = \frac{8}{0.8} = 10$$

El procedimiento de solución es por tanteos

b A P Rh Rh
$$2/3$$
 A Rh^{2/3} A Rh^{2/3}
4.0 9.52 10.26 0.928 0.951 9.057 \neq 10
4.5 10.22 10.76 0.95 0.966 9.875 \neq 10
4.6 10.36 10.86 0.954 0.969 10.04 \approx 10

luego entonces b = 4.60 m

Problema 2.8 La rectificación de un río que atraviesa una ciudad se piensa realizar – mediante un canal cuya sección tiene la forma mostrada en la fig 2.8 con la siguiente –- geometría b = 40 m, $k_1 = k_2 = 2$, $k_3 = k_4 = 3$, $y_1 = 2.2$ m, y $\Delta y = 1$ m. El canal enla época de avenidas debe conducir un gasto máximo Q = 320 m3/seg con un tirante total y = 3.20 m y una pendiente S = 0.00035. Calcular el ancho de las ampliaciones laterales $s = s_1 = s_2$ las cuales tendrían un factor de rugosidad $n_2 = 0.035$ y de $n_1 = 0.025$ para la zona central.

Solución. Zona central 1. Los elementos geométricos son
$$A = (40 + 2 \times 2.2) \ 2.2 + (40 + 2 \times 2 \times 2.2) \times 1$$

$$A = 97.68 + 48.8 = 146.48 \ m^{2}$$

$$P = 40 + 2 \sqrt{1 + 2^{2}} \times 2.2 = 49.839 \ m$$

$$R_h = \frac{146.48}{49.839} = 2.939 \text{ m}$$

$$(R_h)^{2/3} = 2.052$$

$$\sqrt{S} = \sqrt{0.00035} = 0.0187$$

luego el gasto que conduce la parte central es

$$Q = \frac{146.48}{0.025} \times 2.052 \times 0.0187 = 224.91 \text{ m}^3/\text{seg}$$

Por lo tanto, el gasto de las ampliaciones debe ser: 320 - 224.91 = 95.09

 m^3/seg .

Zonas laterales 2

Haciendo $s_1 + s_2 = 2s$

$$A = (2\$ + 3 \times 1) \ 1 = 2\$ + 3$$

Con R_h ≈ 1 m

$$Q = \frac{2s + 3}{0.035} \times 1 \times 0.0187 = 95.09$$

$$s = (\frac{95.09 \times 0.035}{\times 0.0187} - 3) \frac{1}{2} = 87.49 \text{ m}$$

Cada ampliación tendrá un ancho de 87.49 m

2.9 Conductos cerrados parcialmente llenos

Las fórmulas de fricción que utilizan exclusivamente el radio hidráulicopara caracterizar la forma del perfil, en secciones circulares proporcionan el mismo valor
de la velocidad para un llenado parcial a la mitad que para el lleno total, ya que en ambos
casos el radio hidráulico posee la misma magnitud D/4. Esto se observa en las curvas con
líneas de puntos Q/Q₀ y V/V₀ mostradas en la fig 2.11 (sección circular) y en la 2.12
(sección herradura) donde el subíndice cero, que corresponde a la condición de lleno to
tal, hace los resultados adimensionales.

Dichas curvas muestran valores máximos en el caso de sección circular:

para el gasto con índices de llenado y/D = 0.938 y para la velocidad con y/D = 0.81。 - Es más, la curva adimensional Q/Q $_0$ muestra que cuando el tirante es mayor que 0.82 D - se pueden tener dos tirantes distintos para un mismo gasto, uno arriba y otro abajo del valor 0.938 D. Análogamente, la curva adimensional V/V $_0$ muestra que cuando y $_0$ 0.5 D se tienen dos tirantes distintos para la misma velocidad, uno arriba y otro abajo del valor 0.81 D. La anterior discusión es válida bajo la suposición de que el factor de fricción, - (en este caso n de Manning) permanece constante para cualquier valor de y/D $_0$

Yarnell - Woodwards y Büllow determinaron experimentalmente un crecimiento constante del gasto hasta llegar a un máximo que corresponde a y/D = 0.95. —

Straub hizo mediciones en conductos de concreto y determinó un máximo de Q para y/d - ligeramente inferior a 1. Estas discrepancias se explican por el hecho de que la resistencia al movimiento actúa no solo en el perímetro mojado sino también sobre la superficie - libre del agua a través de la fricción con el aire.

Se han hecho varios intentos de corregir este efecto. Camp (ref 2), utilizando un factor de fricción n variable con y, corrige las curvas de puntos de la fig 2.11-para obtener la verdadera variación Q - y y V - y. Sin embargo, se prefiere aquí la ley de variación debida a Kozeny para conductos circulares, quien corrige su fórmula original (ec 8.95 del Vol 1) para conductos a presión, a la forma

$$V = (8.86 \log y + N) \left(\frac{y}{D}\right)^{1/6} \sqrt{SD}$$
 (2.40)

en el caso de que funcione parcialmente lleno. Los resultados para conductos circularesse muestran en la fig 2.11 y su extrapolación para conductos herradura en la fig 2.12.

Cuando el conducto es de Asbesto-Cemento y trabaja parcialmente lleno, se recomienda la fórmula de Ludin

$$V = K_1 R_h^{0.65} S^{0.54}$$

en que KL varía de 134 para V \geq 0.8 m/seg y 122 para V \leq 0.3 m/seg

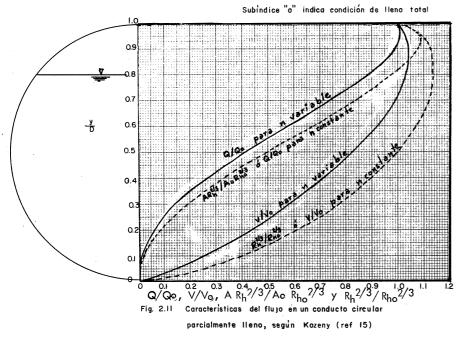
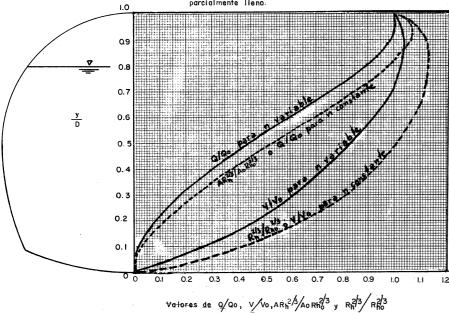



Fig. 2.12 Características del flujo en un conducto herradura parcialmente lleno.

Problema 2.9 Una alcantarilla de concreto de sección circular debe conducir un gasto-Q = 450 lt/seg con una pendiente S = 0.001125. Calcular el diámetro necesario de tal -manera que el tirante sea y = 0.8 D.

Se elige n = 0.011 para la fórmula de Manning. Con y/d = 0.8, de la — fig 3.11 se obtiene Q/Q_o = 0.89 (para n variable), luego el gasto para lleno total es $Q_o = \frac{0.45}{0.89} = 0.506 \text{ m}^3/\text{seg}$

siendo el área y radio hidráulico

$$A_o = 0.7854 D^2$$
 $R_{h_o} = \frac{D}{4} = 0.25 D$
 $R_{h_o}^{2/3} = 0.397 D^{2/3}$
 $S^{1/2} = (0.001125)^{1/2} = 0.0335$

y de la fórmula de Manning para lleno total

$$Q = \frac{0.7854 \text{ D}^2}{0.011} \quad 0.397 \text{ D}^{2/3} \times 0.0335 = 0.506 \text{ m}^3/\text{seg}$$

$$D^{8/3} = \frac{0.506 \times 0.011}{0.7854 \times 0.397 \times 0.0335} = 0.532$$

$$D = 0.79 \text{ m}$$

Problema 2.10 Un túnel revestido de concreto bien acabado tiene la forma mostrada en

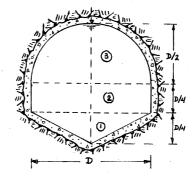


Fig 2.13. Sección del túnel del problema 2.10.

en la fig 2.13, con pendiente S = 0.0004 y diá

metro D = 1.60 m. a) Calcular la velocidad
a tubolleno.

media y el gasto que transporta b) Determinar

el tirante que se establecería si el túnel fuese

de sección herradura de diámetro D = 1.60 m,

para el mismo gasto y pendiente.

Solución a. Los elementos geométricos de la sección se calculan descomponiendo la -

figura en tres partes, como sigue:

tamente llena son:

$$A = \frac{D^2}{8} + \frac{D^2}{4} + \frac{\pi}{8} \quad D^2 = 0.768 \quad D^2 = 0.768 \quad (1.6)^2 = 1.965 \quad m^2$$

$$P = 2 \left[\sqrt{(D/2)^2 + (D/4)^2} + \frac{D}{4} + \frac{\pi}{4} \right] = 2 \left(\sqrt{0.3125} + 0.25 + 0.785 \right) \cdot 1.6 = 5.102 \quad m$$

$$R_b = \frac{1.965}{5.102} = 0.385 \quad m; \quad 2/3 = 0.529$$

De la fórmula de Mannina, para n = 0.013 la velocidad media vale

$$V = \frac{0.529 \times \sqrt{0.0004}}{0.013} = 0.814 \text{ m/seg}$$

$$Q = 1.965 \times 0.814 = 1.601 \text{ m}^3/\text{seg}$$

Solución b De la tabla 2.5 el área y radio hidráulico de la sección herradura comple

$$A = 0.8293 \times (0.6)^2 = 2.123 \text{ m}^2$$

$$R_b = 0.2538 \times 1.6 = 0.406 \text{ m}$$

$$RL^{2/3} = 0.406^{2/3} = 0.548$$

El gasto a tubo lleno valdrá:

$$Q_0 = \frac{2.123 \times 0.548 \times 0.02}{0.013} = 1.791 \text{ m}^3/\text{seg}$$

La relación de gasto a lleno parcial a gasto a lleno total es:

$$\frac{Q}{Q_0} = \frac{1.601}{1.791} = 0.894$$

De la fig 2.12, se obtiene que y/D = 0.8, siendo entonces el tirante:

$$y = 0.8 \times 1.6 = 1.28 \text{ m}$$
.

2,10 DISEÑO DE LA SECCION MAS CONVENIENTE

2.10.1 Planteo del problema

El problema del diseño de un canal generalmente se presenta teniendo como datos el gasto que debe transportar, ha pendiente disponible de acuerdo con la topografía del terreno y la rugosidad de sus paredes. Con estos datos es posible determinar, a partir de la ec. 2.34, un único valor para el módulo de sección A Rh^{2/3}. Sin embargo, como se observa en la fig 2.7, el mismo factor se puede satisfacer con distintas formas de la sección, unas más eficientes que otras, lo que implica más de una solución.

Una de las soluciones consistiría en elegir la forma y dimensiones adecua das que debe tener la sección, de modo que se pueda adaptar a la topografía del terreno donde se va a excavar el canal, y que sea lo más económica posible. Sin embargo, de acuerdo con el material en que se excave el canal, y no existiendo revestimiento, habrá tramos en que la velocidad del agua, erosione los taludes y la plantilla modificando la sección escogida. Por ello conviene diferenciar entre canales revestidos y canales no revestidos. Los primeros comprenden a los canales que se revisten con un material-resistente a la acción erosiva del agua (concreto, mampostería, madera, plástico, etc.), o bien que se excavenen un material de iguales características (cimentación firme, rocasana, etc.). Los segundos comprenden a los canales excavados en un material que resiste a la acción erosiva mientras la velocidad o el esfuerzo tangencial de fricción ejercido por el agua sobre los granos no rebasen a una magnitud, prefijada de acuerdo con las características del material.

Lógicamente, esta diferenciación cambia el criterio de diseño. En el — proyecto de un canal revestido se calculan las dimensiones óptimas de la sección que proporcionen máxima eficiencia hidráulica, mínimo costo o ambas. En cambio, en el diseño de un canal no revestido rigen los criterios de velocidad permisible o de esfuerzo tangen-

cial crítico los cuales dependen del tipo de material en que se excava la sección del canal y que determinan también la rugosidad, la velocidad mínima permisible para evitar el depósito (si el agua transporta sedimento), taludes de la sección, pendiente longitudinal, el bordo libre y la sección óptima. En ambos casos, la tarea del proyectista será mínimizar el costo del canal.

Se describirán a continuación los métodos de cálculo indicados, tanto para los canales revestidos como para los no revestidos.

2.10.2 Canales revestidos

El revestimiento de un canal tiene por objeto prevenir la erosión, evitarlas infiltraciones y disminuir la rugosidad de las paredes. Si bien se puede ignorar el criterio de velocidad máxima permisible, el revestimiento se debe diseñar para evitar la tendencia del agua a dislocar los bloques del mismo y colocarlos fuera de posición.

El volumen de excavación y la superficie de revestimiento son los factores más importantes en el costo del canal. El primero depende del área de la sección y la segunda del perímetro mojado. La optimización de estos dos factores reducirá el costo al — "mínimo".

La sección de máxima eficiencia hidráulica será la de mínimo perímetromojado para una área dada ya que en ella se tendrá la mínima resistencia al escurrimiento,
así como el mínimo costo de revestimiento (o en su defecto, la mínima superficie de infiltración), aunque no necesariamente la mínima excavación.

Para un gasto dado, la sección hidráulica "óptima" sería aquella para la cual el área es mínima; esto implica que la velocidad sea máxima. Según las fórmulas de Chezy y Manning, esto significaría que el radio hidráulico $R_h = A/P$ fuera el máximo. – Para ello será necesario minimizar también el perímetro mojado.

La sección trapecial es la más usada en canales. Normalmente el talud

de la sección no se elige arbitrariamente ya que está supeditado al que pueda resistir el material de excavación y en la tabla 2.7 se dan algunas recomendaciones al respecto.

Tabla 2.7 Taludes recomendables en canales construídos en varias clases de material.

Material

Roca sana no estratificada	0 a 0.25
Roca estratificada ligeramente alterada	0.25 a 0.5
Rocas alteradas, tepetate duro	1
Grava angulosa	1
Arcilla densa o tierra con revestimiento de concreto	0.5 a 1.0
Suelo limo-arenoso con grava gruesa	1 a 1.5
Areniscas blandas	1.5 a 2
Limo arcilloso	0,75 a l
Limo arenoso	1.5 a 2
Material poco estable, arena, tierras arenosas, etc.	2
Arcilla saturada	3

A vía de ejemplo se obtendrán aquí las propiedades geométricas de la — sección trapezoidal "óptima", esto es, de área y perímetro mojado mínimos.

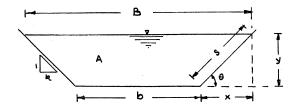


Fig 2.14. Sección Trapezoidal

Con la nomenclatura usada en la fig 2.14, se obtiene que:

$$x = y \cot \theta$$

$$s = \frac{y}{Sen \Omega} \tag{2.41}$$

Por tanto, el área hidráulica, perímetro mojado y radio hidráulico valen:

$$A = by + xy = by + y^2 \cot \theta \qquad (2.42)$$

$$P = b + \frac{2y}{Sen \theta}$$
 (2.43)

$$R_{h} = \frac{by + y^{2} \cot \theta}{b + \frac{2y}{\text{Sen } \theta}}$$
 (2.44)

De la ec (2.43), el ancho de plantilla es

$$b = P - \frac{2y}{Sen \theta}$$

que substituída en la ec (2.42) resulta:

$$A = P y - \frac{2 y^2}{Sen \theta} + y^2 \cot \theta \qquad (2.45)$$

Siendo A y θ constantes, para obtener el área y perímetro mojado mínimos será necesario que simultáneamente dA/dy = 0 y dP/dy = 0. Por tanto, al satisfacer estas condiciones, de la ec. (2.45) resulta:

$$P - \frac{4y}{Sep \theta} + 2y \cot \theta = 0$$

O bien, substituyendo P de la ec (2.43) se obtiene que:

$$b - \frac{2y}{Sep \theta} + 2y \cot \theta = 0$$

y al despejar a b resulta:

$$b = 2 \left(\frac{1 - \cos \theta}{\text{Sen } \theta} \right) y \tag{2.46}$$

que es la condición de área y perímetro mojado mínimo. Substituyendo la ec (2,46) en la ec (2,42) se obtiene que

$$\frac{A}{y} = \frac{2y}{\text{Sen }\theta} - y \cot \theta \tag{2.47}$$

Además, de la geometría de la fig 2.14 se puede escribir que

$$\frac{A}{y} = B - y \cot \theta \tag{2.48}$$

Comparando los términos de las ecs (2.47), (2.48) y (2.41) resulta finalmente que

$$B = \frac{2y}{Sen \theta} = 2S$$
 (2.49)

Es decir que la sección trapecial "óptima" cumple con la condición de – que la mitad del ancho de la superficie libre sea igual a la longitud s del lado inclinado.

Un resultado idéntico al anterior se obtiene si se desea calcular las dimensiones de una sección de área dada con el mínimo perímetro mojado.

En el caso de que sea factible elegir el ángulo óptimo, de la ec (2.45) – se pueden establecer las condiciones $dA/d\theta = 0$ y $dP/d\theta$ (y constante) y demostrarque el ángulo óptimo es $\theta = 60^\circ$; esto es, que la sección trapecial óptima es la mitad — de un exágono regular. Con $\theta = 90^\circ$ en la ec (2.49), se encuentra que B = 2 y por lo cual la sección rectangular óptima es la mitad de un cuadrado. Para la triangular es su ficiente que el ancho de plantilla sea cero en la sección trapecial con $\theta = 60^\circ$ (semi–exágono) y para la circular, la mitad de un círculo.

Volviendo a la sección trapezoidal, con las ecs (2,42), (2,43) y (2,44), la ecuación de Mannina resulta:

$$\frac{Q_n}{s^{1/2}} = \frac{(by + y^2 \cot \theta)^{5/3}}{(b + \frac{2y}{Sen \theta})^{2/3}}$$

Substituyendo la (ec 2.46) en la anterior se obtiene que

$$\frac{Q_n}{S^{1/2}} = \frac{\left[2\left(\frac{1-\cos\theta}{\sin\theta}\right) + \cot\theta\right]^{5/3} y^{8/3}}{\left[2\left(\frac{1-\cos\theta}{\sin\theta}\right) + \frac{2}{\sin\theta}\right]^{2/3}} = \frac{1}{2^{2/3}} \frac{(2-\cos\theta)}{\sin\theta}y^{8/3}$$

y al despejar a y se tiene finalmente que:

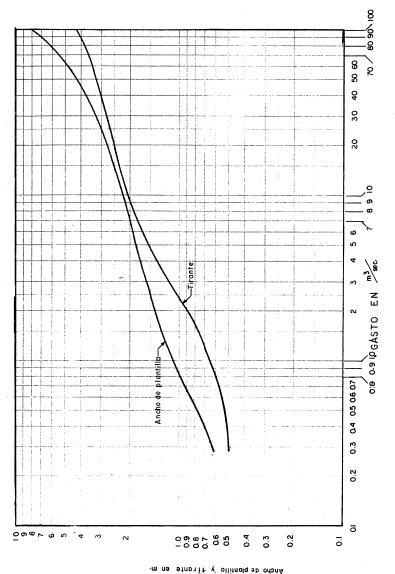
$$y = 21/4 \ (\frac{\sin \theta}{2 - \cos \theta})^{3/8} \ (\frac{Q_n}{51/2})^{3/8}$$
 (2.50)

La ec (2,50) permite calcular el tirante de la sección óptima en función del factor de transporte y del talud permisible en el canal. Obtenido el tirante, la ec — (2,46) proporcionará el ancho de plantilla.

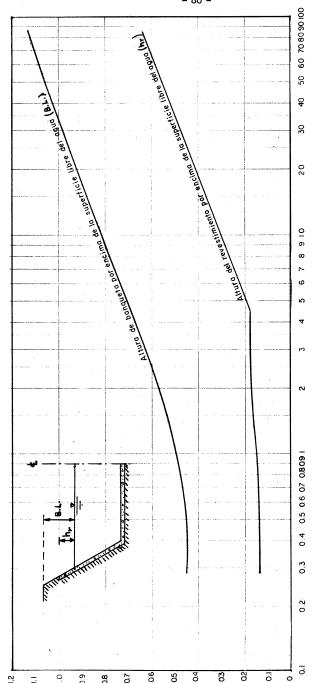
La solución con base en la sección "óptima" es una simplificación del — problema. En la práctica, la economía en el diseño de un canal se complica debido a los siguientes factores:

- a) La resistencia al flujo no es la única consideración importante en el diseño.
- b) El área hidráulica es únicamente el área de paso del agua; el volumen total de excavación debe también incluir bordo libre, bermas, camino de inspección, cunetas, etc., por lo cual un valor mínimo de A no implica necesariamente la excavación total mínima y las dimensiones de la sección del canal pueden variar ampliamente sin que cambie mucho el valor requerido para A.
- c) El costo de la excavación no depende únicamente de la cantidad de material removido. Consideraciones tales como la facilidad de acceso y remosión pueden ser más importantes que el volumen de material excavado.
- d) Si el canal tiene que revestirse, el costo del revestimiento puede ser comparable con el de excavación.
- e) En canales cortos donde la pendiente no queda absolutamente fijada por la topografía local, la pendiente se puede considerar como una variable en los cálculos de economía. Un valor reducido de la pendiente puede requerir un área hidráulica mayor, aunque menos excavación en cortes laterales.

Por estas razones, únicamente en un sentido muy restringido se puede -


decir que las secciones hidráulicamente más eficiente representan la elección "óptima" de la sección.

En el diseño de canales revestidos es común utilizar secciones trapeciales que se apartan de la "óptima". El U.S. Bureau of Reclamation recomienda elegir el an—cho de plantilla o el tirante de acuerdo con la capacidad del canal. La fig. 2.15 muestra una relación de valores promedios, basados en diseños anteriores, según el gasto que va a conducir el canal. Si se elige el ancho de plantilla según la fig 2.15 ello implica que el tirante debe quedar supeditado al cálculo por medio de una fórmula de fricción. El proceso inverso también es válido.


Al elegir la sección transversal de un cànal, se deberá verificar que la -velocidad no sea inferior a un valor mínimo que evite la sedimentación del material que-pudiera transportarse en suspensión. Si el agua es completamente limpia, se acepta que - el valor de la velocidad mínima permisible sea entre 0.10 y 0.20 m/seg, con el fin de — evitar el crecimiento de plantas. Si el agua lleva material en suspensión, se acepta un - valor entre 0.60 y 0.90 m/seg.

Con el fin de prevenir las fluctuaciones del nivel de la superficie del — agua por efecto de ondas u otros factores que puedan ocasionar su desbordamiento, es necesario prever un bordo libre cuya magnitud depende de muchos factores. Generalmente oscila entre 5 y 30 por ciento del tirante del canal. En el caso de canales revestidos, se diferencia también entre bordo libre B_oL y altura del revestimiento h_r por encima de la – superficie libre del agua. Ambos conceptos quedan explicados en la fig 2_o16, donde, — además, se presentan los valores usuales de h_r y B_oL recomendados por el U_oS_o Bureau of Reclamation para distintas capacidades del canal.

Problema 2.11 Un canal de fuerza de sección rectangular debe conducir un gasto ---Q = 3 m3/seg con una velocidad V = 1.2 m/seg. Calcular las dimensiones de la sección

y tirante recomendados para canales Bureau of Reclamation.) Ancho de plantilla revestidos (U.S, Fig. 2.15

M na emuliA

de banqueta recomendados para canales revestidos. Borde y altura Fig. 2.16

EN m3 sec

GASTO

"óptima" y la pendiente necesaria si se reviste de concreto (n = 0.017).

Solución.

La sección rectangular más eficiente es aquella que tiene un ancho de —
plantilla igual al doble del tirante. Sus elementos geométricos son

$$A = b_1 y = 2 y^2$$

$$P = b + 2y = 4y$$

$$R_h = 0.5 y$$

el área necesaria debe ser

$$A = \frac{3}{1.2} = 2.5 \text{ m}^2$$

por lo tanto

$$2 y^2 = 2.5$$

$$y = 1.118 \, m$$

$$b = 2 \times 1.118 = 2.236 \text{ m}$$

$$R_h = 0.559 \, m$$

$$R_h^{2/3} = 0.679$$

y de la fórmula de Manning (con n = 0.017)

$$S = (\frac{V_n}{R_h 2/3})^2 = (\frac{1.2 \times 0.017}{0.679})^2$$

$$S = 0.0009$$

Problema 2.12 Un canal de fuerza revestido de concreto de sección trapecial, talud — k = 1.5, debe conducir un gasto $Q = 50 \text{ m}^3/\text{seg}$ con una pendiente S = 0.00026. a) Dimensionar la sección "óptima" y calcular la pendiente necesaria. b) Dimensionar la sección de acuerdo con el criterio del U.S.B.R.

Solución a. Siendo el talud permisible en el canal k = 1.5, las funciones dependientes del ángulo θ de inclinación del talud son:

Sen
$$\theta = \frac{1}{\sqrt{3.25}} = 0.5547$$

$$\cos \theta = \frac{1.5}{\sqrt{3.25}} = 0.83205$$

Por tanto, con n = 0.017, de la ec (2.50) resulta que:

$$y = 2^{1/4} \left(\frac{0.5547}{2 - 0.83205} \right)^{3/8} \left(\frac{50 \times 0.017}{\sqrt{0.00026}} \right)^{3/8} = 3.979 \text{ m}$$

De la ec (2.46) el ancho de plantilla será entonces:

$$b = 2 \left(\frac{1 - 0.83205}{0.5547} \right) 3.979 = 2.409 \text{ m}$$

esto es, un ancho de plantilla menor que el tirante.

El área hidráulica será entonces:

$$A = (2.409 + 1.5 \times 3.979) 3.979 = 33.3277 \text{ m}^2$$

y la velocidad media

$$V = \frac{Q}{A} = \frac{50}{33.3277} = 1.5 \text{ m/seg}$$

Solución b. De la fig 2.15 el ancho de plantilla recomendable es b = 4.20 m. Por -

tanto, el factor de conducción en términos adimensionales vale:

$$\frac{A R_h^{2/3}}{h^{8/3}} = \frac{Q_n}{h^{8/3} S^{1/2}} = \frac{50 \times 0.017}{4.208/3 \sqrt{0.00026}} = 1.148$$

De la fig 2 la relación y/b = 0.843, por tanto el tirante sería

$$y = 0.843 \times 4.20 = 3.541 \text{ m}$$

Siendo el área hidráulica:

$$A = (4.20 + 1.5 \times 3.541) 3.541 = 33.6743 \text{ m}^2$$

y la velocidad media

$$V = \frac{50}{33.6743} = 1.485 \text{ m/seg}$$

Esto es, se obtienen valores practicamente iguales a los "óptimos".

De la fig 2,16, el bordo libre y altura de revestimiento son

$$B_{o}L = 1.07 \text{ m}$$

$$h_r = 0.56 \text{ m}$$

Problema 2.13 Determinar el diámetro de un canal circular revestido de cemento $\frac{1}{2}$ (n = 0.0125) para que conduzca un gasto de 5 m³/seg con una pendiente S = 0.00161 de $\frac{1}{2}$ tal manera que se tenga la sección "óptima" (y = D/2)

Solución.

$$A = \frac{77}{8} D^2$$

$$R_h = \frac{D}{4}$$

$$\sqrt{S} = \sqrt{0.00161} = 0.0401$$

De la fórmula de Manning

$$5 = \frac{1}{0.0125} \frac{\pi}{8} D^2 \frac{D^{2/3}}{4^{2/3}} \times 0.04$$

$$D^{8/3} = \frac{5 \times 0.0125 \times 8 \times 42/3}{3.14 \times 0.0401} = 9.995$$

$$D = 2.371 \text{ m}$$

y la velocidad es

$$V = \frac{8 \times 5}{3.14 \times (2.371)^2} = 2.265 \text{ m/seg}$$

Problema 2.14. Se desea diseñar la sección de un canal trapecial no revestido (n = 0.03)para un gasto Q = 32 m³/seg, pendiente longitudinal S = 0.0004. El talud del canal es -k = 0.5, y el bordo libre será a = 0.2 y. El canal se va a excavar en la ladera de una montaña que tiene una inclinación $\angle = 10^\circ$ efectuando cortes con $k_2 = 0.5$ como el mostradoen la fig 2.17 de manera de formar primero una plataforma y después excavar la sección —
del canal propiamente dicha. La berma existente entre la sección del canal y la montañasirve para recoger las aguas de lluvia con una cuneta y también para evitar que cualquier-

derrumbe que se produzca no caiga directamente al canal. La berma del lado opuesto permite formar la sección y ayuda a evitar las infiltraciones. Puede permitirse que por cual—quiera de los lados pase un camino que se usa tanto para la construcción como para el mantenimiento del canal. Diseñar la sección del canal de manera que el volumen de excava—ción sea el mínimo, haciendo que c = B + 2 m; esto es, g+d = 2 m.

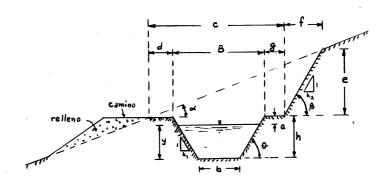


Fig 2.17 Corte transversal de la excavación en el canal del problema 2.14

Solución. Con objeto de hacer comparaciones, se diseñará primero la sección "óptima" sin considerar el resto de la excavación. Para k_I = 0.5, se tiene que

Sen
$$\theta = \frac{1}{\sqrt{1.25}} = 0.894427$$

$$\cos \theta = \frac{0.5}{\sqrt{1.25}} = 0.447214$$

Por tanto, de la ec (2.50) resulta que

$$y = 2^{1/4} \left(\frac{0.894427}{2 - 0.447214} \right)^{3/8} \left(\frac{32 \times 0.03}{\sqrt{0.0004}} \right)^{3/8} = 4.129 \text{ m}$$

De la ec (2.46) el ancho de plantilla será entonces:

$$b = 2 \left(\frac{1 - 0.447214}{0.894427} \right) 4.129 = 5.104 \text{ m}$$

Siendo el área hidráulica:

$$A = (5.104 + 0.5 \times 4.129) 4.129 = 29.5987 \text{ m}^2$$

y la velocidad media:

$$V = \frac{32}{29.5987} = 1.081 \text{ m/seg}$$

El bordo libre y la profundidad total h de la sección son:

$$a = 0.2 \times 4.129 = 0.826 \text{ m}$$

$$h = 4.129 + 0.826 = 4.9548 m$$

El área total de excavación del canal será entonces

$$A_c = (5.104 + 05 \times 4.9548) 4.9548 = 37.5643 \text{ m}^2$$

Se considerarán ahora las condiciones que incluyan el resto de la excava

ción.

De acuerdo con la nomenclatura usada en la fig 2.17 el área de excavación a la altura de la plataforma vale:

$$A_{p} = \frac{c e}{2}$$
 (a)

La tangente de los ángulos 🗸 y 🖊 se puede calcular como sigue:

$$\tan \beta = \frac{e}{f}$$
 (c)

Eliminando e de las dos ecuaciones anteriores, resulta que:

$$f = \frac{c \tan \alpha}{\tan \beta - \tan \alpha}$$
 (d)

y al sustituir esta ecuación en la (c) resulta:

$$e = \frac{c \tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$$
 (e)

y de las ecs (e) y (a) el área Ap vale:

$$A_{p} = \frac{\tan \alpha \cdot \tan \beta}{2 (\tan \beta - \tan \alpha)} c^{2}$$
 (f)

Si el talud $k_2 = 0.5$, tan/3 = 1/0.5 = 2 y, además, tan $< = tan i0^\circ$, re-

sulta que:

$$A_p = 0.09669 C^2$$
 (g)

Por otra parte, el factor de conducción del canal es:

$$K = \frac{Q \text{ n}}{S^{1/2}} = \frac{32 \times 0.03}{0.02} = 48$$
 (h)

Del valor de K se obtiene el tirante y_n y la profundidad total de excavación $h = y_n + a = 1.2 \ y_n$. El área de excavación del canal está dada por la ecuación

$$A_c = bh + 0.5 h^2$$

Siendo, además: B = b + 2 k h = b + h, entonces:

$$c = B + 5 m = b + h + 2 m$$

El área total de excavación es igual a: $A_t = A_c + A_p$. Para diferentes valores de b se calculará el tirante normal yn necesario para transportar el gasto y además – el área total de la excavación en cada caso. En la tabla que sigue se presenta un resumen de los cálculos.

b	Уn	h	A _c	С	Ap	At
3.40	5.046	6.0552	38.9204	11.4552	12.6875	51 .6079
3,60	4.921	5。9052	38.6944	11,5052	12.7985	51 .4929
3.80	4.801	5.7612	38.4883	11.5612	12,9234	51 .411 <i>7</i>
4.00	4.685	5,622	38,2914	11.622	13.0597	51 .3511
4.20	4,575	5.490	38,1281	11.69	13,2130	51 .3411
4.40	4.469	5.3628	37.9761	11 <i>.</i> 7628	13,3781	51 .3542
4.60	4.367	5。2404	37.8367	11.8404	13,5552	51 .391 9
4.80	4.270	5.124	37.7229	11.924	13.7472	51 .4701
5.00	4.177	5.0124	37.6241	12.0124	13,9518	51 .5759

En la tabla se observa que el área total mínima de excavación se obtiene para b=4.20 m con un tirante normal $y_n=5.49 \text{ m}$ que es distinta que la sección considerada óptima.

2.10.3 Canales no revestidos

La fórmula de flujo uniforme utilizada en el diseño de canales revestidos es in suficiente en el caso de los no revestidos debido a que el diseño es esencialmente un problema de estabilidad de la sección. Si el canal transporta sedimentos o está excavado en material erosionable, es necesario que no ocurra depósito ni erosión, esto es, el canal de be estar en equilibrio con respecto al transporte de sedimentos, de manera que la cantidad total de los mismos que transporta sea a lo largo del canal, o bien, impedir dicho transporte.

Existen fundamentalmente dos tipos de problemas en el diseño de canales erosionables de acuerdo con las condiciones que deben cumplir y para su estabilidad.

- a) Canales transportando agua limpia o material fino en suspensión
- b) Canales transportando material sólido de arrastre sobre el fondo.

Aquí sólo se tratará del diseño de canales erosionables que presentan las características del primer tipo. Los del segundo tipo son objeto de estudio detallado en lahidráulica fluvial.

En el caso de canales transportando agua limpia o con material fino en suspensión las condiciones del canal exigen que no se deposite dicho material y que la capacidad erosiva del flujo sea tal que no erosione el lecho y paredes del canal.

Pueden mencionarse dos métodos que sirven de guía para el diseño de canales en estas condiciones:

- a) Método de la velocidad máxima permisible
- b) Método de la "fuerza tractiva"
- a) Método de la velocidad máxima permisible. Consiste en limitar la velocidad media a un valor que no cause erosión en las paredes. El límite máximo de esta velocidad es inciento y variable; depende principalmente del tamaño, clase de material de —

las paredes y del tirante de flujo. Sin embargo, el método ha caído en desuso debido a que no toma en cuenta la distribución de velocidades, la cual depende principalmente — de la forma de la sección. Por esta razón, diferentes autores recomiendan el uso del método del esfuerzo tangencial crítico que proporciona resultados más apegados a la realidad. De cualquier manera, se presentan aquí los resultados de Lichtvan-Levediev (ref 16), de — los cuales las velocidades máximas permisibles para suelos no cohesivos y para un rango — amplio en el tamaño medio de material y de tirantes pueden obtenerse de la tabla 2.8 y — para materiales cohesivos de la fig 2.18. El diámetro d₈₀ del material corresponde a —— aquel para el cual el 50 por ciento del material (en peso) tiene un diámetro menor que éste.

Definida la velocidad máxima permisible, el área de la sección será

$$A = \frac{Q}{V \max}$$

y el radio hidráulico queda determinado de la fórmula de Manning y así mismo el resto de la geometría de la sección. Si es el caso, la sección puede modificarse con el fin de — adaptarla a las necesidades del problema.

Problema 2.15 Determinar el tipo de material que resista la velocidad V = 1.2 m/seg — del canal en el problema 2.11, si se quisiera eliminar el revestimiento.

Solución. Para y = 1.12 m y material cohesivo, de la tabla se admitiria, por ejemplo, un suelo arcilloso de 1.66 a 2.04, ton/m³ de peso volumétrico seco. Para material no cohesivo, de la fig 2.18 este debería ser grava gruesa con d50 = 15 mm.

b) Método de la "fuerza tractiva". Sirve principalmente para secciones trapeciales y permite conocer el grado de estabilidad de los taludes. Al aumentar la velocidad, un grano en posición estable sobre el talud puede perder ese equilibrio cuando todavía son estables los granos sobre la plantilla. El método consiste en encontrar el esfuerzo tangencial producido por el flujo, que no sobrepase el valor crítico para el material -

										Ī		ı			,		
Denominación de los suelos	Porcen nido de	Porcentaje del conte nido de partículas	Sue pesc terii ton/	Suelos por peso volur terial sec ton/m ³	Suelos poco compactos, peso volumétrico del ma terial seco hasta 1,66 – ton/m3	actos, del ma 1.66 =	Sue con ria	Suelos medianamente compactados, peso - volumétrico del mate rial seco, 1,20 a 1,3 ton/m3	dianar dos, p co del 1.20	Sue los medianamente compactados, peso - volumétrico del material seco, 1,20 a 1,36 ton/m³		slos co so volu mater 1,66-	Suelos compactos, peso volumétricodel material seco de 1.66-2.04 — ton/m3		Suelos tos, e trico o seco o	Suelos muy compactos, el peso volume trico del material seco del material forma del material forma del 2.04-2.14	ompac olume rial 2.14
	,								Tira	Tirantes	m e d	medios, en m	E .		5		
	₹0.005	500-500°0	0°4	0°.1	2,0	3.0	0.4	0,1	2.0	0.4 1.0 2.0 3.0	0.4	0, 1	0.4 1.0 2.0 3.0 0.4 1.0	0	4	0 2.0	3.0
Arcillas y tierras	30-50	70-50	0 35	3	7 0 2	4	1	0 0	2		-	-	+	+:	+	,	
	20-30	80-70	3	t o			}		 	-	?	7° -	4. -	<u>-</u> ว•	4 	1.0 1.2 1.4 1.5 1.4 1.7 1.9 2.1	2.1
Tierras ligeramente arcillosas	10-20	08-06	0.35 0.4 0.45	0.4	I	0.5	0,65	0.65 0.8 0.9 1.0	6.0	0.1	0.95	1.2	4	.5	4	0.95 1.2 1.4 1.5 1.4 1.7 1.9 2.1	2.1
Suelos de aluvión y arcillas margosas							9*0	0,6 0.7 0.8 0.85	8.0	1	8.0	0.	2 -	<u>-</u> س	-	0.8 1.0 1.2 1.3 1,1 1.3 1.5 1.7	1.7
Tierras arenosas	5- 10	20–40	Segúr	la fig	Según la fig. 2,18 de acuerdo con el tamaño de las fracciones arenosas	de acue	ardo co	n el ta	maño c	le las fr	accior	nes are	nosas	-	-	-	

- 89 -

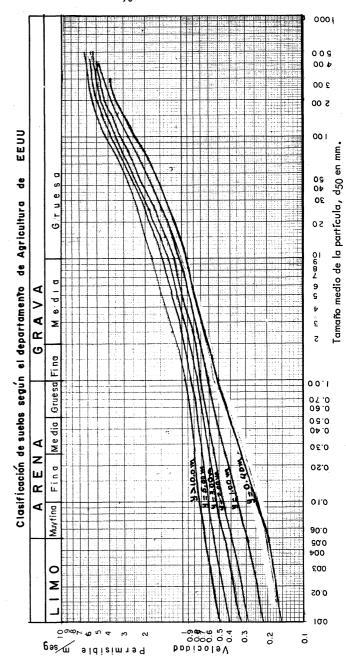


Fig 2,18. Velocidad permisible en materiales no cohesivos.

del fondo.

El valor medio del esfuerzo tangencial producido por el flujo está dado — por la ec (2.1.a), la cual para un canal ancho en que el radio hidráulico puede confundir se con el tirante, es

$$\mathbf{G}_{\mathbf{o}} = \mathbf{7} \quad \mathbf{y} \quad \mathbf{S} \tag{2.51}$$

Con excepción de los canales muy anchos, se ha comprobado que dicho es fuerzo no se distribuye uniformemente sobre las paredes, sino como se indica en la fig 2.19 para una sección trapezoidal, b = 4 y (según U.S. Bureau of Reclamation).

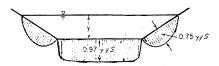


Fig 2.19 Distribución del esfuerzo cortante sobre las paredes de un canal trapezoidal.

Como resultado de estos estudios, en las figs 2.20 y 2.21 se muestran los valores máximos del esfuerzo tangencial de arrastre, tanto en los taludes como en la plantilla de canales trapeciales en función del valor medio: $\delta_0 = 7 \text{ y S}$.

Por otra parte, sobre las partículas que descansan en los taludes de un canal trapecial actúan dos fuerzas: la fuerza tangencial de arrastre a ζ_s y la componente del peso en la dirección de la pendiente máxima del talud W_s sen θ , las cuales hacen que la partícula tienda a moverse. Los símbolos usados son (fig 2.21):

- a área efectiva de la particula, en m²
- **Z**s esfuerzo tangencial de arrastre en el talud el canal, en kg/m²
- Ws Peso de la particula sumergida, en kg
- θ ángulo del talud

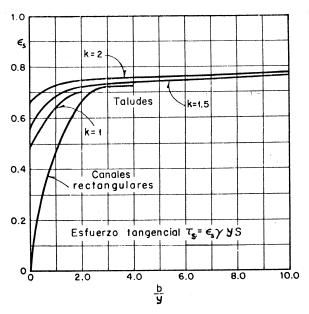


Fig 2.20a Esfuerzo tangencial que la corriente produce sobre les taludes

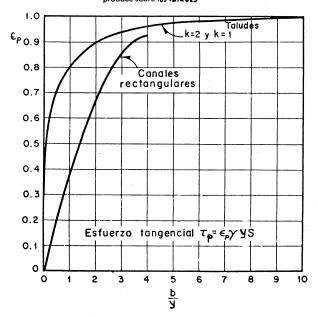


Fig 2.20 b Esfuerzo tangencial que la corriente produce en el fondo

La resultante de estas fuerzas, por ser perpendiculares entre si, es

$$\sqrt{W_s^2 \operatorname{Sen}^2 \theta + a^2 \delta_s^2}$$

La partícula en estas condiciones está equilibrada por la fuerza de fricción ejercida sobre ella, que es igual al producto de la componente normal al talud correspondiente al peso de la partícula (W_s cos θ) multiplicada por el coeficiente de fricción interna: tan ϕ (ϕ = ángulo de reposo del material). En el caso límite, cuando la partícula está a punto de rodar, se establece el siguiente equilibrio:

$$W_s \cos \theta \tan \varphi = \sqrt{W_s^2 \operatorname{Sen}^2 \theta + a^2 \ \zeta_s^2}$$

Despejando a 6 resulta que:

$$G_s = \frac{W_s}{a} \cos \theta \tan \varphi \sqrt{1 - \frac{\tan^2 \theta}{\tan^2 \varphi}}$$

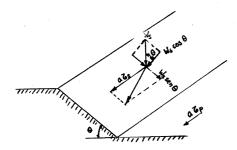


Fig 2.21. Fuerzas actuando sobre una partícula colocada sobre el talud de un canal trapezoidal

En el caso de partículas descansando en la plantilla del canal; $\theta=0$, la ecuación anterior es:

$$\mathcal{E}_{p} = \frac{W_{s}}{q}$$
 tan φ

Llamando K a la relación entre el esfuerzo tangencial crítico en los talu

des $alpha_s$ y el esfuerzo tangencial de arrastre en la plantilla $alpha_p$, se tiene:

$$K = \frac{Z_s}{Z_p} = \cos \theta \sqrt{1 - \frac{\tan^2 \theta}{\tan^2 \varphi}}$$
 (2.52 a)

Debido a que:

$$K^2 = \cos^2 \theta - \frac{\sin^2 \theta}{\tan^2 \varphi} = 1 - \sin^2 \theta \ (1 + \frac{1}{\tan^2 \varphi}) = 1 - \sin^2 \theta \left(\frac{\tan^2 \varphi_{+1}}{\tan^2 \varphi}\right)$$

también se escribe como sigue:

$$K = \sqrt{1 - \frac{\hat{s}en^2 \theta}{sen^2 \psi}}$$
 (2.52 b)

La ec (2.52) depende sólo del ángulo del talud θ y el ángulo φ de reposo del material. Para materiales cohesivos y materiales no cohesivos finos, la fuerza de cohesión es muy grande en comparación con la fuerza de gravedad y ésta puede ser ignorada. — Para materiales no cohesivos el U.S.B.R., ha preparado las curvas de diseño mostradas en la fig 2.22 que muestra los diferentes valores del ángulo de reposo para materiales no cohesivos mayores de 5 mm de diámetro y para varios grados de redondez. El diámetro considerado d75 es el de una partícula para la cual el 25 por ciento en peso del material tiene un diámetro ma yor de éste.

El U.S.B.R. ha estudiado los esfuerzos permisibles en las plantillas de los – canales, basándose en el tamaño de la partícula para materiales no cohesivos. y en la compacidad y relación de vacíos para algunos materiales cohesivos. Los resultados de estos estudios pueden resumirse en las siguientes recomendaciones:

- a) Para suelos cohesivos los esfuerzos tangenciales críticos recomendados se presentan en la fig 2.23.
- b) Para material grueso no cohesivo el U.S.B.R., recomienda un valor del esfuerzo permisible en kg/m² igual al diámetro (d75) en mm dividido entre 13.

diente. Se puede entonces seguir un procedimiento de tanteos resumidos en los siguientespasos:

- 1. De acuerdo con las características del material, de la fig 2.22 se determina el ángulo ψ de reposo del mismo y se elige el talud de manera que $\theta \Leftarrow \phi$.
- 2. De la ec (2.52) se calcula el valor de $K = \delta_s / \delta_p$.
- De la fig 2.23 ó 2.24 se determina el esfuerzo tangencial Z_p permisible sobre la plantilla, de acuerdo con las características del material.
- 4. Se calcula el valor del esfuerzo tangencial \mathcal{E}_s máximo permisible en los taludes a partir de la ecuación: $\mathcal{E}_s = K \mathcal{E}_{p^\circ}$
- 5. Puesto que se conoce

 y S, el esfuerzo cortante producido por el flujo, tanto sobre los taludes como en la plantilla quedará determinado por ecuaciones del tipo:

 E = y S € y, donde € será función de b/y y k.
- 6. Se supone una relación b/y y de las figs 2.20a y b se obtiene € quedando las ecuaciones del paso 5 en función únicamente de y.
- 7. Se igualan & s y & p del paso 6 con los permisibles de los pasos 3 y 4,—
 de donde se despejan los valores de y; se escoge el menor.
- 8. De la relación y/b supuesta en el paso 6 se despeja y
- Con la geometría obtenida se revisa la sección con ayuda de la fórmula de Manning, de tal manera que sea factible la conducción del gasto de diseno.
- 10. Si el gasto calculado no es el deseado, se escoge un nuevo valor b/y, y se repite el procedimiento a partir del paso 6 hasta satisfacer esta condi-ción.
- 11. Se proporciona el bordo libre necesario y se ajustan las dimensiones a va

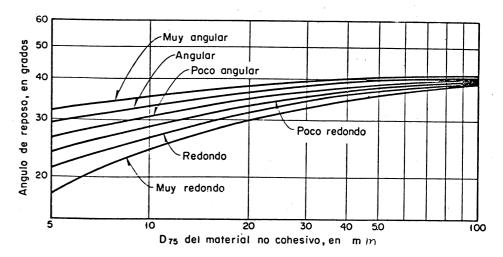


Fig 2.22 Angulo de reposo de un suelo no cohesivo en función del diámetro de sus partículas

res prácticos.

Problema 2.16 Diseñar la sección de un canal trapezoidal sin revestimiento que conduzca un gasto Q = 60 m³/seg sin que erosione la sección. El canal será excavado en material
aluvial grueso poco angular, de tal manera que el 25 por ciento tiene un diámetro mayor
de 40 mm. La pendiente de la plantilla es S = 0.001.

Solución. 1) De la fig 2.22, $\phi = 37^\circ$, siendo cot $\phi = 1.327$. Por tanto cualquier valor de θ que sea menor que ϕ sería adecuado. Por ejemplo, para un talud k = 1.75 — cot $\theta = 1.75$, cos $\theta = 0.8682$.

2) De la ec (2.52) resulta que:

$$k = \frac{\zeta_s}{\zeta_p} = 0.8682 \sqrt{1 - \left(\frac{1.327}{1.75}\right)^2} = 0.566$$

3) El esfuerzo tangencial máximo que resiste un grano de 40 mm sobre la plantilla se obtiene de la ecuación

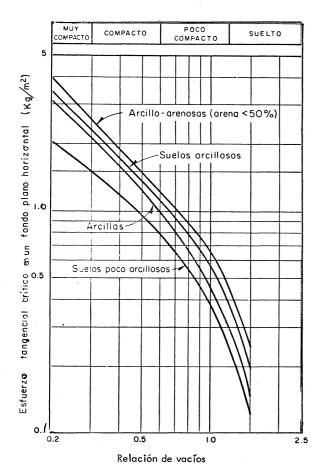
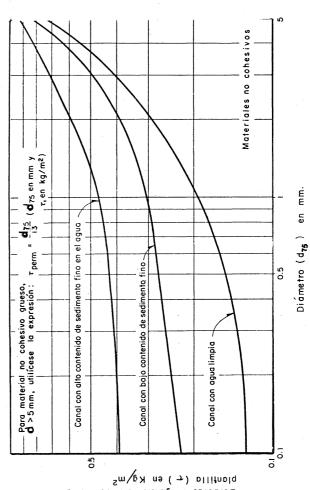



Fig 2.23 Esfuerzo tangencial crítico necesario para erosionar un suelo cohesivo

Esfuerso tangencial crítico necesario para mover de un suefo no cohesivo, que se encuentran en un fon-

las partículas do plano

Fig. 2.24

Estuerzo tangencial crítico en la plantilla (7) en Kg/m²

$$Z_p = \frac{d75}{13} = \frac{40}{13} = 3.077 \text{ kg/m}^2$$

4) El esfuerzo tangencial permisible que ese mismo material resiste sobre el talud es:

$$\delta_s = K \delta_p = 0.566 \times 3.077 = 1.742 \text{ kg/m}^2$$

5) El esfuerzo tangencial que el flujo produce sobre el talud o plantilla

es

$$\mathcal{E}_{s} = \chi S \mathcal{E}_{s} \gamma = 1000 \times 0.001 \mathcal{E}_{s} \gamma = \mathcal{E}_{s} \gamma$$

$$\epsilon_p = \chi S \epsilon_p y = 1000 \times 0.001 \epsilon_p y = \epsilon_p y$$

donde ϵ_s se obtiene de la fig 2.20 a y ϵ_p de la 2.20 b, de acuerdo con b/y y k.

Igualando \mathbf{Z}_{p} y \mathbf{Z}_{s} permisibles (de los pasos 3 y 4) con los anteriores, resulta que:

$$y_s = \frac{1.742}{\epsilon_s} \tag{a}$$

$$y_{p} = \frac{3.077}{\epsilon_{p}} \tag{b}$$

A continuación se presenta una tabla que resume los tanteos para determinar las dimensiones de la sección según los pasos 6 a 11. El factor de fricción se obtiene de la ecuación de Williamson (2.24) como sigue:

$$n = 0.01195.(40)^{1/6} = 0.022$$

y de la ecuación de Manning

$$\omega = \frac{A R_h^{2/3} s^{1/2}}{n} = \frac{(0.001)^{1/2}}{0.022} A R_h^{2/3} = 1.4374 A R_h^{2/3}$$

b/y	Es	€ _p	Уs	Ур	у	b	А	Р	R _h	_{Rh} 2/3	Q
1.5	0.72	0.86	2,419	3.578	2.419	3.629	19.0176	13,3803	1 .421	1 .264	34,56∠60
2.0	0.73	0.9	2.386	3,419	2.386	4.772	21 .3487	14.39	1 .433	1.271	39 .6 0 ∠60
4.0	0.75	0.96	2.323	3.205	2.323	9.292	31 .0289	18,656	1.663	1.404	62.61 - 60
3.8	0.75	0.96	2.323	3,205	2.323	8,827	29.9496	18.191	1 .646	1.394	60,02≈60
L	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>								

Aceptando un bordo libre de 0.3 y = 0.70 m, las dimensiones definitivas de la sección se muestran en la fig 2.25.

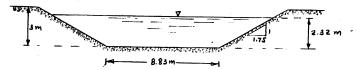


Fig 2.25. Dimensiones definitivas de la sección del canal en el problema 2.16.

CAPITULO 3. ENERGIA ESPECIFICA Y REGIMEN CRITICO

3.1 Introducción

La ecuación de la energía permite resolver con relativa sencillez aquellos problemas de flujo a superficie libre en que se conoce el tirante de las dos seccionesextremas del tramo en que se aplica. Este problema es, en esencia, similar al del cálculo del gasto en un tubo a partir de las presiones aguas arriba y en el estrangulamiento deun venturímetro.

Cuando se tiene un cambio de área en un tubo a presión, la ecuación – de continuidad permite determinar el cambio en la velocidad y carga de velocidad y deella el cambio de presión; sin embargo, el mismo problema en un canal se torna más com
plicado; cuando se desconoce el tirante en alguna de las secciones y tiene que ser calculado a partir de los cambios en la sección transversal, ello conduce a dificultades especiales de mucho interés debido a que el tirante juega un doble papel al influir en las —
ecuaciones de energía y continuidad simultáneamente. Para mejor aclaración de lo ex—
puesto, se presenta el siguiente problema.

Problema 3.1. La constricción en el canal rectangular mostrado en la fig 3.1 es sufi-

cientemente gradual y lisa como para despreciar la pérdida de energía; en ella no existe cambio en el ancho de la plantilla, sino únicamente en su nivel. Conocidas las condiciones en la sección 1 determinar las de la sección 2.

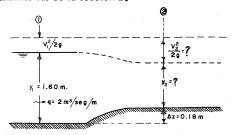


Fig 3.1. Transición en el canal del problema 3.1

Siendo el gasto por unidad de ancho $q = 2 \text{ m}^3/\text{seg/m}$ y $y_1 = 1.60 \text{ m}$, la velocidad y la carga de velocidad serán:

$$V_1 = \frac{q}{y_1} = \frac{2}{1.6} = 1.25 \text{ m/seg}$$

$$\frac{V_1^2}{2g} = \frac{(1.25)^2}{19.6} = 0.08 \text{ m}$$

De la ecuación de energía entre las secciones 1 y 2 resulta:

$$y_1 + \frac{V_1^2}{2g} - \Delta_z = y_2 + \frac{V_2^2}{2g}$$

o bien, sustituyendo los valores numéricos, se tiene:

$$y_2 + \frac{V_2^2}{2g} = 1.50 \text{ m}$$

Además, con $V_2 = q/Y_2 = 2/Y_2$, la ecuación anterior es

$$y_2 + \frac{4}{2g y_2^2} = 1.5$$

Al hacer operaciones y ordenar los términos, resulta:

$$y_2^3 - 1.5 y_2^2 + 0.204 = 0$$

Del análisis de esta ecuación se deduce que existen tres valores de y2, dos de ellos positivos y uno negativo que la satisfacen. Dichos valores son: 1.395m, —
0.439m y - 0.334m. Desde el punto de vista matemático, cualquiera de los tres resolve
rían el problema; sin embargo, físicamente debe existir un solo tirante en la sección 2 que satisfaga las condiciones de la sección aguas arriba. Surge entonces el problema de
elegir el tirante correcto de los tres que existen; esto es, la necesidad de un estudio especial de la ecuación de energía que proporcione la solución adecuada y que es el propó
sito principal de este capítulo.

3.2 Energía Específica

La energía específica en la sección de un canal se define como la energía por kilogramo de agua que fluye a través de la sección, medida con respecto al fondo del canal. Por lo tanto, de la ec 1.13 a, la energía específica vale:

$$E = y \cos^2 \theta + \alpha \frac{\sqrt{2}}{2g}$$
 (3.1)

esto es, equivale a la suma de tirante y carga de velocidad, aceptando que el incremento de presión con la profundidad sigue la ley hidrostática. En el caso de θ pequeño, — cos $\theta \approx 1$ y para un canal de cualquier forma y área hidráulica A, con V = Q/A la energía específica vale:

$$E = y + \angle \frac{V^2}{2g} = y + \angle \frac{Q^2}{2g A^2}$$
 (3.2)

Suponiendo que Q es constante y A es función del tirante, la energía – específica es función únicamente del tirante. En la fig 3.2 se presenta gráficamente la ec 3.2, a través de una curva que tiene dos ramas. En el caso de θ pequeño, y $\ll 1$, la rama AC se aproxima asintóticamente al eje horizontal y la rama BC a la línea OD que pasa por el origen y tiene una inclinación de 45° . Si Θ es grande se satisfacen —

las mismas condiciones anteriores con la única diferencia que la línea OD no tiene la inclinación de 45°. En cualquier punto P sobre la curva, la abscisa representa la energía-específica en la sección y que corresponde al tirante y representado por la abscisa del — punto P. Existe una tercera rama de la curva (indicada con línea de puntos) que representa las soluciones negativas sin interés práctico.

La curva muestra que para una determinada energía específica existen dos valores del tirante: y₁, y₂, que reciben el nombre de <u>tirantes alternados</u>: el alternado – menor y₁ y el mayor y₂. En el punto C la energía específica es la mínima con la cual-puede pasar el gasto Q a través de la sección y para la cual existe un solo valor del tirante, y_C, que recibe el nombre de <u>tirante crítico</u> y al cual corresponde una velocidad lla—mada crítica. El estado del flujo que se desarrolla con el tirante crítico recibe el nombre de estado o régimen crítico.

Cuando el tirante es mayor que el crítico, la velocidad es menor que lacrítica para el gasto dado; y en estas condiciones, el flujo se encuentra en estado o régimen subcrítico. Cuando el tirante es menor que el crítico, la velocidad es mayor que lacrítica y el flujo se encuentra en estado o régimen supercrítico. En cada régimen, el tirante y la velocidad adquieren el nombre que corresponda (subcríticos o supercríticos).

Si el gasto cambia a otro valor y se mantiene de todos modos constante, - la curva de energía específica cambia a las posiciones A'B' y A"B", según que el gasto sea menor o mayor, respectivamente, que el gasto usado para la construcción de la curva - AB.

También se observa que al elegir una energía específica E_o constante, – el punto C" indica la última curva E – y que quedaría intersectada por la vertical de — abscisa E_o. Puesto que el gasto Q correspondiente a cada curva E – y crece a medida que estas se desplazan a la derecha, el punto C" señalará la curva E – y de gasto Qmáx que

fluiría con la energía específica Eo.

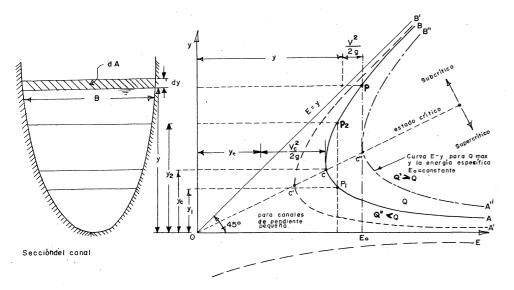


Fig 3.2 Curvas de energía específica

Con la curva de energía específica para el canal del problema 3.1 es posible aclarar los conceptos antes indicados. La fig 3.3 a muestra nuevamente la constricción y la 3.3 b la curva de energía específica correspondiente. Suponiendo que el flujo aguas arriba del escalón (sección 1) tiene una energía específica E_1 mayor que la mínima, las condiciones del flujo quedan representadas por el punto A sobre la rama superior de la curva E-y de la fig 3.3 b, calculada para el gasto unitario q constante. Debido a que no existe cambio en el ancho del canal, q no varía y el punto que representa las condiciones del flujo en la sección 2 debe quedar sobre la misma curva en que se encuentra A. — Siendo la energía específica en la sección 2: $E_2 = E_1 - \Delta \not\equiv$, las soluciones posibles — quedarán representadas por los puntos de intersección de la línea $E=E_2$ con la curva — E-y. Los puntos B y B1 proporcionan dos soluciones físicamente posibles que también —

se aplicarían al caso en que el flujo en la sección 1 quedara representado por el punto — A' el cual tiene la misma energía específica que el A. Queda por resolver el problemade elegir la solución correcta de las dos reales posibles teniendo como guía valiosa la forma de la curva E - y.

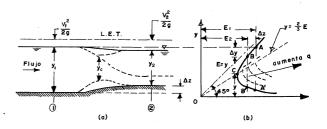


Fig 3.3. Uso de la curva de energía específica en la transición del problema 3.1

Para encontrar la solución correcta, es necesario elegir el camino adecuado para pasar de A a alguno de los puntos B o B'. Si se pasara de A a B a lo largo de la curva E -y y después de B a B' sobre la vertical, esto implicaría que el gasta q-iría cambiando a lo largo de la transición y, como consecuencia, el ancho del canal en forma simultánea. Este cambio en el ancho tomaría la forma de una contracción seguida por una expansión como se muestra en las figs 3.4 a y b, donde se ha eliminado el esca-lón para mayor claridad.

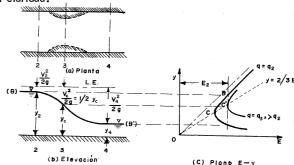


Fig. 3.4 Cambio de un régimen a otro al cambiar el ancho del canal.

Debido a que el ancho permanece constante, el único camino posible de B a B' sería sobre la curva E - y de la fig 3.3b; sin embargo siguiendo dicho camino, - la energía específica tendría que disminuir por debajo de E₂ y después aumentar hasta — este valor. Esto podría acontecer si el nivel de la plantilla se elevara temporalmente, por encima del nivel del escalón, lo suficiente para llegar hasta C, formar el tirante crítico, y después regresar al nivel del escalón como se muestra en la fig 3.3a.

Se concluye que si el ancho del canal no varía y la plantilla no se eleva por arriba del nivel del escalón, el punto B' es inaccesible si el flujo aguas arriba está representado por el punto A. Por un razonamiento análogo se concluye que el punto B es inaccesible si el flujo aguas arriba está representado por el punto A'. El salto de la rama superior a la inferior o viceversa es posible únicamente en el caso de que exista una reducción local, tanto en el ancho como en el nivel de plantilla, dentro de la zona del escalón.

Se observa que para ir de A a B el tirante disminuye, por tanto, la velocidad y carga de velocidad deben aumentar. Debido a que la línea de energía permanece al mismo nivel, la superficie del agua debe descender sobre el escalón (fig 3.3a). — Esta es una conclusión sorprendente toda vez que sería de esperarse una elevación del nivel del agua por la presencia del escalón. Por el contrario, el movimiento de A' a B'— se acompaña de un incremento en el tirante y un ascenso de la superficie libre.

En el caso específico del problema 3.1 es evidente que el régimen en la sección 1 es subcrítico con energía específica de valor:

$$E_1 = y_1 + \frac{v_1^2}{2g} = 1.60 + 0.08 = 1.68 \text{ m}$$

En efecto, para esta energía específica otro valor del tirante que la satisface (para el mismo gasto unitario $q = 2 \text{ m}^3/\text{seg/m}$) vale $y_1 = 0.398 \text{ m}$; esto significa que el punto A de la fig 3.3b representa las condiciones para $y_1 = 1.60 \text{ m}$ y el punto A' las -

condiciones para y 1 = 0.398 m siendo el primer punto la condición real del flujo en la — sección 1. El punto B corresponderá entonces a las condiciones de la sección 2.

En el caso de que y₁ fuese 0.398m, el punto A' representaría las condiciones del flujo en la secc⁻ón 1y el B' las de la sección 2.

De acuerdo con los planteamientos que hemos hecho, si $\Delta_{\mathbb{Z}}$ es suficientemente grande para hacer que E_2 sea menor que la energía específica mínima (representa da por el punto c), no existe solución posible, esto es, los tres valores prescritos de q, E, y $\Delta_{\mathbb{Z}}$ no pueden existir simultáneamente en el canal. En esto no hay novedad alguna; — en efecto, al observar la curva de energía específica se concluye que si $\Delta_{\mathbb{Z}}$ es muy grande, el gasto q no podrá pasar con la energía específica disponible. Para lograrlo se forma rá una onda que se trasladará hacia aguas arriba estableciendo un nuevo estado permanente forzando a que q disminuya o que E_1 aumente.

La altura máxima posible en el escalón que evita modificaciones del flujo hacia aguas arriba, es igual a la diferencia entre la energía específica aguas arriba y-la mínima posible (correspondiente al estado crítico). Es importante notar que cuando la altura del escalón corresponde a la crítica y es de corta longitud como en la fig 3.5, el-régimen aguas abajo puede ser supercrítico o subcrítico, dependiendo de las condicionesahí impuestas. De la fig 3.3 se observa que si el punto que representa al flujo se muevede A a C, después queda libre de volver a la rama de régimen subcrítico de la curva o de continuar hacia la de supercrítico, según sean las condiciones de aguas abajo. Si hay algún control del lado aguas abajo, la tendencia será hacia el régimen subcrítico; de locontrario, hacia el supercrítico. La convergencia del flujo hacia el escalón produce unefecto similar después del mismo, tal como se observa en la fig 3.5. Al observar que elmismo principio opera cuando el régimen de aguas arriba es supercrítico, se concluye que cualquiera de los regímenes de flujo del lado aguas arriba puede pasar a cualquiera de los del lado aguas abajo.

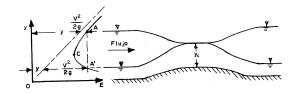


Fig 3.5. Efecto de un escalón corto ascendente y de altura "crítica"

Consideraciones semojantes se aplican en el caso de una reducción en el ancho donde la condición crítica se traza sobre el plano E – y, como se muestra en la fig 3.6; una línea vertical dibujada desde el punto A de aguas arriba, toca en la cresta C' a una curva interior de gasto q superior. El valor de q de esta curva proporciona el anchomínimo de la contracción. Nuevamente el flujo aguas abajo puede ser supercrítico o subcrítico.



Fig 3.6. Cambios en el ancho y nivel de plantilla trazados sobre la curva E-y.

El problema antes presentado desde luego se puede generalizar también – a canales no rectangulares y es de gran interés práctico. A menudo acontece que una — contracción local debe introducirse en un canal, por ejemplo para reducir el costo de un puente cuando pasa debajo de un camino o bien para pasar de un canal trapecial a una al cantarilla de sección circular debajo de un camino. Resulta entonces esencial conocer – cuál debe ser la magnitud tolerable de la contracción para que no haya influencia en las condiciones de aguas arriba. El problema consiste en encontrar la sección más pequeña – que sea capaz de sostener el mismo gasto para una energía específica dada. Dicha sección

a aquella que opere en estado crítico.

Una contracción que influya severamente en el flujo de aguas arriba seconvierte en un tipo especial de control y se conoce como "estrangulamiento" y el verbo "estrangular" describe la acción de la contracción.

3.3 Régimen Crítico

3.3.1 Condición de estado crítico (Gasto constante)

En las discusiones del subcapítulo anterior se ha demostrado que hay dos posibles tirantes de flujo para cada combinación de valores de la energía específica y del gasto y que la transición de un tirante a otro puede ocurrir únicamente bajo ciertas condiciones especiales. Estos dos tirantes (representados por las dos ramas de la curva E-y, - separados por la cresta C) son característicos de dos tipos diferentes de flujo. Un camino lógico para explorar la diferencia entre ellos sería el discutir primero el flujo representado por el punto C que se encuentra en la condición crítica entre los dos regímenes alternativos. La palabra "crítico" se usa para describir este estado de flujo y puede definirse como aquel para el cual la energía específica es la mínima con que puede fluir un gasto Q dado a través de la sección de un canal de forma especificada.

Las propiedades analíticas del régimen crítico se pueden derivar aten—
diendo a la definición antes dada. Para un gasto constante y suponiendo que « es tam
bién constante, la derivada con respecto a y de la ec (3.2) es :

$$\frac{dE}{dy} = I - \checkmark \frac{Q^2}{g A^3} \frac{dA}{dy}$$

El elemento de área dA cerca de la superficie libre (fig 3.2) es igual-a B dy; por lo tanto, con B = dA/dy, la ecuación anterior es:

Haciendo A/B = Y (tirante hidráulico de la sección, que en el caso — de la rectangular, coincide con el verdadero tirante), la ecuación anterior se transforma a:

$$\frac{dE}{dy} = I - F_r^2 \tag{3.3b}$$

donde $F_r = V/\sqrt{gY/\omega}$ representa el número de Froude de la sección del canal,—calculado considerando el tirante hidráulico como longitud característica. Puesto que el estado crítico se produce para la energía específica mínima, por el criterio de la primera derivada (d E/d y = 0), de la ec (3.3b) se obtiene:

$$F_{r_c} = \frac{V_c}{\sqrt{g Y_c / \alpha}} = \frac{Q}{A_c \sqrt{g Y_c / \alpha}} = 1 \qquad (3.4a)$$

o bien

$$\frac{Q^2}{g/\ll} = \frac{A_c^3}{B_c}$$
 (3.4b)

Las ecs (3.4a ó b) imponen las condiciones del estado crítico en un - canal de forma cualquiera y permiten calcular el tirante crítico. La primera ecuación - indica que el número de Froude para el estado crítico vale 1. La segunda presenta una-clara relación entre las condiciones de gasto en la sección contra elementos geométricos de la misma, éstos dependientes unicamente del tirante. Aquí conviene aclarar que si - el canal es gran pendiente, para calcular A_C y B_C en la ec (3.4b) es suficiente utilizar dc cos Θ en lugar de y_C (dc es el tirante crítico normal a la plantilla).

3.3.2 Condición para gasto máximo (E_O constante)

Consideremos ahora el problema que se plantearía al suponer una energía específica E_O constante en la fig 3.2 y de encontrar cuál sería la magnitud $Q_{m\acute{a}x}$ - del gasto que podría fluír a través de la sección con dicha energía. Dicha situación — quedaría representada por el punto C" que es el punto de intersección entre la vertical - de abscisa E_O y la curva E₋y correspondiente al gasto $Q_{m\acute{a}x}$.

La ec (3.2) se puede también escribir en la forma siguiente;

$$Q = \sqrt{2g/\kappa}$$
 A (E₀ - y)^{1/2} (3.2)

En esta ecuación se observa que para y = 0, Q = 0 y para $y = E_0$, —

Q = O y entre estos dos valores existe un máximo para Q. La gráfica Q - y mostrada en la fig 3.7 representa el lugar geométrico de la ec 3.2. Se observa que existen dos valores de y para cada valor de Q, excepto en el máximo. El criterio para el gasto máximo se - puede obtener nuevamente por derivación, como antes:

$$\frac{dQ}{dy} = \sqrt{2g/\alpha} \left[A \frac{(E_0 - y)^{-1/2}}{2} (-1) + \frac{dA}{dy} (E_0 - y)^{1/2} \right] = 0$$

y recordando que dA/dy = B, se obtiene que:

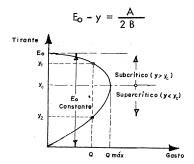
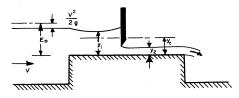
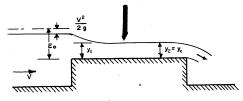


Fig 3.7. Relación Gasto-tirante para energía específica constante

Por otra parte, de la ec (3.2): $E_0 - y = \angle Q^2/2gA^2$ y, por lo tanto, de la ecuación anterior resulta:


$$\frac{Q^2}{g/\alpha} = \frac{A^3}{B}$$

la cual es idéntica a la ec (3.4b) y significa que para una energía específica constante – el gasto máximo ocurre para el estado crítico, o sea


$$\frac{Q^2 \text{ máx}}{g/\omega} = \frac{A_c^3}{B_c}$$
 (3.5)

Se ha establecido así otra propiedad importante del estado crítico, no só lo proporciona la energía específica mínima para un gasto unitario dado, sino también el gasto máximo para una energía específica dada. Para este último caso, la energía específica E_O, es la mínima con la cual puede pasar el gasto máximo a través de la sección.

El concepto de energía específica constante se puede ilustrar con el comportamiento del flujo en la vecindad de una compuerta deslizante situada cerca del punto medio de una porción sobreelevada de la plantilla del canal (fig 3.8a y b). La energía específica E_O (referida al nivel de la porción sobreelevada) se considera constante.

a) Compuerta parcialmente levantada

b) Compuerta totalmente levantada

Fig 3.8 Compuerta deslizante actuando como control sobre una zona de plantilla sobrelevada

Cuando la compuerta se encuentra cerrada, el tirante y_1 aguas arriba — es igual a E_0 , mientras el de aguas abajo y_2 es cero. Si la compuerta se levanta parcialmente una cantidad menor que y_c , el perfil de la superficie adopta la condición — $y_1 \rightarrow y_c$ y $y_2 \leftarrow y_c$, como se muestra en la fig 3.8a. Para un levantamiento total

de la compuerta los niveles aguas arriba y aguas abajo deben ser los mismos: $y_1 = y_2 = y_c$ y el gasto debe ser el máximo, creando así las condiciones de flujo de un vertedor de cresta ancha.

Problema 3.2 Las condiciones aguas arriba de una contracción en el ancho de un canal - rectangular son como las indicadas en el problema 3.1. El ancho del canal se contrae -- gradualmente de 3m a 2.70 m sin existir cambio en la elevación de la plantilla. Determinar el tirante dentro de la contracción.

Solucion:

vale:

De los resultados del problema 3.1 la energía específica en la sección 1 -

$$E_1 = 1.60 + 0.08 = 1.68 \text{ m}$$

teniendo E_2 este mismo valor debido a que el nivel de plantilla no cambia. Sin embargo, el gasto unitario q_2 es distinto de $2 \text{ m}^3/\text{seg/m}$ de la sección 1 debido al cambio en el - ancho del canal. Dicho gasto resulta de la ecuación de continuidad

$$q_2 = 2 \frac{3}{2.70} = 2.222 \text{ m}^3/\text{seg/m}$$

Por lo tanto:

$$E_2 = y_2 + \frac{q_2^2}{2g y_2^2} = y_2 + \frac{0.252}{y_2^2} = 1.68$$

cuyas soluciones son: $y_2 = 1.58\,\mathrm{m}$ ó $0.453\,\mathrm{m}$. De nuevo aquí, solo el valor subcrítico — $y_2 = 1.58\,\mathrm{m}$ es posible. La solución a este problema puede también ser trazada sobre la curva E-y dibujada sobre la fig 3.7. Para este caso se observa que se puede tratar como el de la variación del gasto con la energía específica constante de la fig 3.7. En efecto, si bien el gasto total no varía, la modificación en el ancho origina un cambio del gasto — unitario existiendo una curva del tipo de la fig 3.7. Si las condiciones en la sección de aguas arriba corresponden al régimen subcrítico, esto implica que dichas condiciones que darían representadas por un punto sobre la rama superior de la curva. Para pasar a la

sección 2 con la misma energía específica y un gasto unitario mayor, sería necesario desplazarse sobre la curva hacia la derecha (sin rebasar el máximo) con una reducción del tirante, tal como lo señalan los resultados obtenidos al pasar de 1.60m a 1.58m.

3.3.3 Cálculo del tirante crítico

Las condiciones teóricas en que se desarrolla el régimen crítico están da das por la ec (3.4b). Considerando que $\, \simeq \, = \, 1 \,$ dicha ecuación es:

$$\frac{C}{\sqrt{g}} = \frac{A_c^{3/2}}{B_c^{1/2}} \tag{3.6}$$

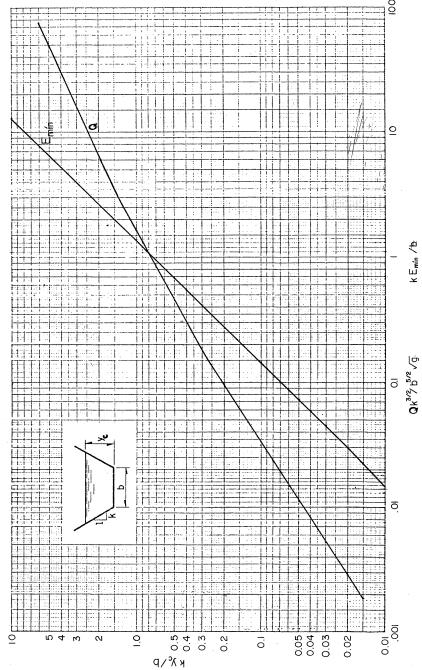
La ec (3.6) indica que dada la forma de la sección en un canal y el gasto, existe un tirante crítico único y viceversa. Como un criterio general, dicho tirante queda definido al satisfacer dicha ecuación cualquiera que sea la forma de la sección. Sin embargo, para las secciones más usuales se han desarrollado fórmulas más sencillas, o
bien gráficas para un cálculo más rápido del tirante crítico.

Sección rectangular. Para un canal rectangular de ancho de plantilla b, la ec (3.6) se es cribe 3/2 3/2

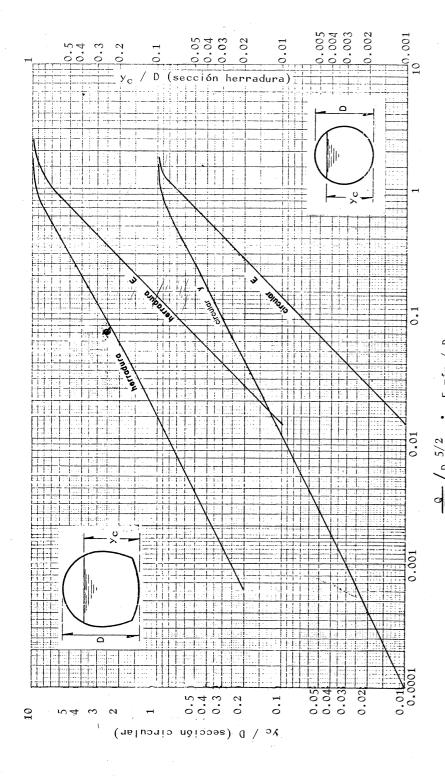
 $\frac{Q}{\sqrt{g}} = \frac{b^{3/2} y_c^{3/2}}{b^{1/2}}$

de donde, al hacer q = Q/b (gasto unitario) el tirante crítico vale:

$$y_{c} = \sqrt[3]{\frac{q^{2}}{g}}$$
 (3.7)


 $\label{eq:continuous} \mbox{Esta ecuación permite el cálculo directo del tirante crítico en una sec-ción rectangular. Sustituyendo en ella q = V_C y_C, resulta que }$

$$\frac{y_c}{2} = \frac{v_c^2}{2g}$$


y de la ec (3.2) se obtiene

Emín =
$$y_c + \frac{y_c}{2} = \frac{3}{2} y_c$$
 (3.8)

Sección trapezoidal. Para un ancho de plantilla b y talud k, la ec (3.6) r esulta:

y energía específica-mínima en secciones trapezoidales. Curvas para determinar el tirante crítico

$$\frac{O}{\sqrt{a}} = \left[\frac{(b + k y_c)^3 y_c^3}{b + 2 k y_c} \right]^{1/2}$$
 (3.9a)

o bien, multiplicando ambos miembros por $k^{3/2}/b^{5/2}$, se obtiene

$$\frac{Q k^{3/2}}{b^{5/2} \sqrt{g}} = (k \frac{y_c}{b})^{3/2} \left[\frac{(1 + k \frac{y_c}{b})^3}{1 + 2 k \frac{y_c}{b}} \right]^{1/2}$$
 (3.9b)

Las condiciones de régimen crítico deberán satisfacer la ec 3.9 b y parasimplificar los cálculos, en la fig 3.9 se presenta la curva que relaciona los términos de dicha ecuación. Dicha figura permite hacer una determinación suficientemente precisadel tirante crítico cuando se conoce el gasto y la geometría de la sección.

Es posible obtener también una relación entre el tirante crítico y la energía específica mínima. En efecto, sustituyendo $\frac{2}{2g}$ de la ec (3.4a) en la 3.2,-se obtiene que:

Emin =
$$y_c + \frac{A_c}{2 B_c} = \frac{2 y_c B_c + A_c}{2 B_c}$$

Además, sustituyendo $A_c=(b+k\ y_c)\ y_c$, $B_c=b+2\ k\ y_c$ en la ecuación anterior, resulta lo siguiente:

Emin =
$$\frac{2 (b + 2 k y_c) y_c + (b + k y_c) y_c}{2 (b + 2 k y_c)}$$

 $\label{eq:Esta} \textbf{Esta} \ \textbf{ecuación} \ \textbf{se} \ \textbf{puede} \ \textbf{simplificar} \ \textbf{y} \ \textbf{escribir} \ \textbf{con} \ \textbf{términos} \ \textbf{adimensionales} \\ \textbf{como} \ \textbf{sigue} \ \vdots$

$$\frac{k \text{ Emin}}{b} = \frac{3 + 5 (k \text{ yc/b})}{2/(k \text{ yc/b}) + 4}$$
 (3.10)

En la fig 3.9 se presenta gráficamente la ec 3.10 y permite hacer un cálculo suficientemente preciso de la energía específica mínima cuando se conoce el tirante crítico o viceversa.

Sección circular y herradura. De la ec (3.6) se puede plantear una ecuación semejante

a la (3.9a) para estas dos secciones, como sigue:

$$\frac{Q}{D^{5/2} \sqrt{g}} = f(\frac{y_c}{D})$$

En la fig 3.10 se presentan las curvaspara estas secciones que permiten obtener el tirante crítico cuando se conoce el gasto en el canal y en las tablas 2.5 y 2.6 los mismos valores. De manera semejante al canal trapezoidal, se puede derivar una ecuación del tipo siguiente:

$$\frac{\text{Emin}}{D} = f \left(\frac{y_c}{D} \right)$$

que permite obtener la energía específica mínima en un canal circular cuando se conoce el tirante crítico o viceversa. En la fig 3.10 se presenta gráficamente la ecuación anterior.

Sección triangular. Para esta forma de sección de talud k en las orillas, se hace b=0 en la ec (3.9a) y se obtiene:

$$\frac{Q}{\sqrt{g}} = \left(\frac{k^3 y_c^6}{2 k y_c}\right)^{1/2} = \left(\frac{k^2 y_c^5}{2}\right)^{1/2}$$
 (3.11a)

Despejando resulta:

$$y_c = 5\sqrt{\frac{2 Q^2}{g k^2}}$$
 (3.11b)

Esta ecuación permite realizar el cálculo directo del tirante crítico.

Sustituyendo la ec (3.11 a) en la (3.2) resulta:

Emin =
$$y_c + \frac{y_c}{4}$$

Por lo tanto, se tiene que:

$$Emin = \frac{5}{4} y_c \tag{3.12}$$

ecuación que también permite el cálculo directo de la energía específica mínima cuando

se conoce el tirante crítico o viceversa.

Sección parabólica. Se considera que esta sección es simétrica respecto a un eje vertical y que el área hidráulica se puede calcular de la siguiente ecuación:

$$A = c v^{3/2}$$

donde c es una constante que depende de la forma de la parábola.

La derivada de la energía específica respecto del tirante igualada con cero

es

$$\frac{dE}{dy} = \frac{d}{dy} \left(y + \frac{G^2}{2g c^2 y^3} \right) = I - \frac{3 G^2}{2g c^2 y^4} = 0$$

y despejando el tirante crítico

$$y_{c} = \sqrt[4]{\frac{3 Q^{2}}{2g c^{2}}}$$
 (3.13)

Además, despejando de esta ecuación a Q y sustituyendo en la ec (3.2),

resulta:

Emin =
$$y_c + \frac{c^2 y_c^4}{3 c^2 y_a^3}$$

y de aquí:

$$Emin = \frac{4}{3} yc ag{3.14}$$

3.3.4 Pendiente crítica

El estado o régimen crítico en la sección de un canal existe cuando el tirante y la velocidad adquieren los valores críticos para un gasto dado. Si dicha situación se desea hacer extensiva a lo largo de un canal prismático, ello equivale a que dicho
canal tenga un flujo uniforme de tirante normal igual al crítico. La permiente de plantilla S_C necesaria para que ello ocurra recibe el nombre de "crítica".

Si un flujo uniforme se presenta en un canal con pendiente menor que la

crítica ($S_0 \angle S_c$), el flujo es con régimen subcrítico y la pendiente se llama "subcrítica" o más comúnmente "suave". Por el contrario, si el flujo uniforme es con pendientemayor que la crítica ($S_0 \triangle S_c$), el régimen es supercrítico y la pendiente se llama "supercrítica" o "pronunciada".

Un estado de flujo uniforme cerca del crítico es inestable debido a que un cambio menor en la energía específica causaría un cambio grande del tirante, como puede observarse en la fig 3.2. Los cambios menores en la energía específica pueden deberse – a cambios de rugosidad de una sección a otra, depósitos de sedimentos o cambios de sec—ción.

De lo anterior se observa que el tirante crítico y la energía específica tienen un papel muy importante en el flujo en canales. En particular, la relación única que existe entre velocidad y tirante para la condición crítica significa que tiene gran utilidad para aplicaciones prácticas en la medición de flujos y en el establecimiento de puntos—de control.

Problema 3.3 Un canal rectangular de 2 m de ancho de plantilla debe conducir un gasto de 3 m³/seg. Calcular la energía específica mínima necesaria para conducir dicho gasto. Solución

El gasto por unidad de ancho vale :

$$q = \frac{3}{2} = 1.5 \text{ m}^3/\text{seg/m}$$

De la ec (3.7) el tirante crítico es

$$y_c = \sqrt[3]{\frac{(1.5)^2}{9.8}} = 0.612 \text{ m}$$

La velocidad crítica y su correspondiente carga de velocidad son:

$$V_c = \frac{1.5}{0.611} = 2.45 \text{ m/seg}$$

 $\frac{V_c^2}{2a} = 0.306 \text{ m}$

y la energía específica mínima es

$$E = 0.612 + 0.306 = 0.918 \text{ m}$$

Obsérvese que el número de Froude crítico vale: $F_{rc} = 2.45 / \sqrt{9.8 \times 0.612} = 1$, lo - cual verifica la ec (3.4a).

Problema 3.4. Un canal trapecial tiene un ancho de plantilla b = 2.50 m, taludes --- k = 1.5 y debe conducir un gasto de $20 \text{ m}^3/\text{seg}$. Calcular el tirante crítico, la energía - específica mínima y la pendiente crítica para un factor de rugosidad n = 0.015.

Solución

De acuerdo con los datos, se obtiene

$$\frac{Q k^{3/2}}{\sqrt{q} b^{5/2}} = \frac{20 (1.5)^{3/2}}{\sqrt{9.8} (2.5)^{5/2}} = 1.188$$

De la fig 3.9 resulta que k $y_c/b = 0.85$, por lo cual

$$y_c = \frac{0.85 \times 2.5}{1.5} = 1.42 \text{ m}$$

Si se desea un valor más preciso de y_c , es necesario resolver la ec (3.4b) por aproximaciones sucesivas

$$-\frac{Q^2}{g} = \frac{(20)^2}{9.8} = 40.82$$

Siendo el área hidráulica crítica:

$$A_c = (b + k y_c) y_c = (2.5 + 1.5 y_c) y_c$$

y el ancho critico de la superficie libre:

$$B_c = b + 2 k y_c = 2.5 + 3 y_c$$

Por lo cual, se debe cumplir que

$$\frac{A_c^3}{B_c} = \frac{\left[(2.5 + 1.5 \, y_c) \, y_c \right]^3}{2.5 + 3 \, y_c} = 40.82$$

La solución se resume en la siguiente tabla:

Por lo tanto, el tirante crítico correcto es yc = 1.41 m. La velocidad -

crítica vale

$$V_c = \frac{20}{6.507} = 3.074 \text{ m/seg}$$

y de la ec (3.4a) el número de Froude crítico es:

$$F_{rc} = 3.074 / \sqrt{9.8 \times 6.507 / 6.73} = 1$$

lo cual verifica dicha ecuación. La carga de velocidad crítica vale

$$\frac{V_c^2}{2g} = \frac{(3.074)^2}{19.6} = 0.482 \text{ m}$$

y la energía específica mínima

$$E_{min} = 1.41 + 0.482 = 1.892 m$$

o bien, para k yc/b = $1.5 \times 1.41/2.5 = 0.85$, de la misma fig 3.9 resulta que ----

k Emin/b = 1.14 y por tanto-

$$E_{min} = \frac{1.14 \times 2.5}{1.5} = 1.90 \text{ m} \approx 1.892$$

Finalmente, el perímetro mojado y radio hidráulico son:

$$P_c = b + 2\sqrt{1 + k^2}$$
 $y_c = 2.5 + 2\sqrt{1 + 2.25}$ 1.41 = 7.58 m

$$R_{hc} = \frac{6.507}{7.58} = 0.358 \text{ m}; \quad R_{hc}^{2/3} = 0.903$$

De la fórmula de Manning, la pendiente crítica es:

$$S_c = \left(\frac{V_{c n}}{Rh_c 2/3}\right)^2 = \left(\frac{3.074 \times 0.015}{0.903}\right)^2 = 0.0026$$

Problema 3.5. Una galería circular de 2.50 m de diámetro debe conducir un gasto de-

Solución

$$\frac{Q}{\sqrt{g/\alpha}} / D^{5/2} = \frac{15}{\sqrt{9.8/1.05}} / 2.5^{5/2} = 0.4968$$

De la fig 3.10 resulta que $\frac{y_c}{D} = 0.72$ y de aquí

$$y_c = 0.72 \times 2.5 = 1.8 \text{ m}$$

Para $y_c/D = 0.72$ de la fig 3.11 resulta que Emín/D = 1.06 y por lo -

tanto:

$$Emin = 1.06 \times 2.5 = 2.64 m$$

Problema 3.6 Las condiciones de flujo aguas abajo de una cierta sección de un canal - rectangular imponen que escurra un gasto de 80 m³/seg con una energía específica de — 2.50 m. ¿Si el canal tiene un ancho de plantilla de 18 m, a cuánto deben reducirse dicho ancho o el tirante para que se produzca un cambio de régimen?

Solución.

dría que:

Al obligar a que 2.50 m sea la energía específica mínima con que escurra el gasto dado, de las ecs (3.7) y (3.8) resulta que:

$$Emin = \frac{3}{2} = 3 \sqrt{\frac{Q^2}{b^2 \min g}} = 2.50 \text{ m}$$

Por lo tanto, el ancho mínimo sería:

$$b_{min} = \frac{1.5^{3/2} Q}{\sqrt{9.5 m_{min}^{3/2}}} = \frac{1.5^{3/2} \times 80}{\sqrt{9.8} \times 2.5^{3/2}} = 11.877 m$$

Si en lugar de reducir el ancho más bien se construye un umbral, se ten-

$$E_{min} = 1.5 \frac{3}{\sqrt{b^2 g}} = 1.5 \frac{3}{\sqrt{182 \times 9.81}} = 1.895 \text{ m}$$

y la altura del umbral deberá ser:

$$s = 2.50 - 1.895 = 0.605 m$$

Problema 3.7. Determinar el gasto que escurre sobre un vertedor rectangular de cresta - ancha, como el de la fig 3.8b y comparar el resultado con el del problema 1.3.

Solución.

Puesto que se forma el tirante crítico sobre la plataforma, para $\ll = 1$ de la ec (3.7) resulta:

$$q = \sqrt{g y_c^3}$$

Siendo el gasto total para un ancho b de cresta:

$$Q = \sqrt{g} b y_c^{3/2}$$

Además, de la ec (3.8) $y_c = \frac{2}{3}$ Eo que al sustituir en la ecuación anterior resulta:

 $Q = (\frac{2}{3})^{3/2} \sqrt{g}$ b $E_0^{3/2} = 1.704 \text{ b } E_0^{3/2}$

Esta ecuación no toma en cuenta la altura del umbral y es el resultado - de aceptar que sobre la cresta se forma el tirante crítico. El valor C es mayor que el obtenido en el problema 1.3.

Problema 3.8. Por la aplicación de la ecuación de la cantidad de movimiento, determinar el tirante que se presenta en la sección final de un canal rectangular horizontal, a partir de la cual se inicia una caída libre (fig 3.10). Suponer para ello que en dicha sección la presión en el fondo es cero y que la sección crítica se presenta a una distancia x hacia aguas arriba.

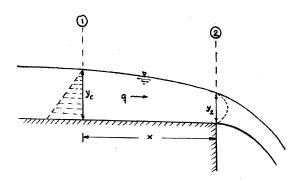


Fig 3.10 Tirante al inicio de una caída libre.

Solución

Siendo q el gasto por unidad de ancho, la ecuación de la cantidad de -movimiento entre las secciones 1 y 2 (supuesto que el empuje hidrostático en 2 vale cero)
conduce a

$$\frac{\mathbf{x} \, \mathbf{y}_{c}^{2}}{2} = \frac{\mathbf{x} \, \mathbf{q}}{\mathbf{q}} \, \left(\mathbf{V}_{2} - \mathbf{V}_{c} \right) \tag{a}$$

y con la ecuación de continuidad

$$q = V_c y_c = V_2 y_2 \tag{b}$$

resulta

$$\frac{y_c^2}{2} + \frac{V_c^2}{q} y_c = \frac{V_2^2}{q} y_2$$
 (c)

Siendo 1 la sección crítica, la energía específica en dicha sección es E

y además

$$y_c = \frac{2}{3} E = \frac{V_c^2}{g}$$
 (d)

Por lo tanto, de la ec (b)

$$\frac{V_2^2}{g} = \frac{V_c^2}{g} - \frac{y_c^2}{y_2^2}$$

$$\frac{V_2^2}{g} = \frac{V_c^2}{g} - \frac{y_c^2}{y_2^2} = \frac{2}{3} E \frac{4}{9} - \frac{E^2}{y_2^2}$$
 (e)

Sustituyendo las ecs (d) y (e) en la (c):

$$\frac{4}{2 \times 9}$$
 E² + $(\frac{2}{3}$ E)² = $\frac{8}{27}$ $\frac{E^3}{y_2^2}$ y₂

Despejando a y₂ resulta:

$$y_2 = \frac{4}{9} E$$

o bien, de la ec (d)

$$y_2 = \frac{2}{3} y_c = 0.667 y_c$$

Experimentalmente, Rouse encontró que $y_2 = 0.715 \ y_c$ o sea un 7 por ciento mayor que el aqui encontrado. O Brien también otuvo que $x = 11.6 \ y_c$.

3.3.5 Velocidad crítica y velocidad de la onda.

Con \checkmark = 1, la ec (3.4 a) establece que la velocidad V_c en el estado crítico es igual a $\sqrt{g}\,Y_c$ que es la magnitud de la velocidad con que se propaga unaonda larga de pequeña amplitud en agua de tirante Y_c . Ello da una interpretación física del estado crítico muy importante.

Existen dos tipos de ondas en el agua: las oscilatorias que se forman enel mar a cierta distancia de la costa y las ondas de "choque" que fueron discutidas en elproblema 1.2. Las primeras se mueven sin pérdida sustancial de energía; por el contrario, las últimas tienen frentes turbulentos que rompen con pérdida sustancial de energía.

En los libros de hidrodinámica se demuestra que la celeridad de las ondas

de longitud grande (en comparación con la profundidad y) llega a tener un valor apro \times mado de \sqrt{gy} .

Se considera que la onda de choque se genera por el movimiento horizon tal de una placa vertical en un canal que contiene agua en reposo, como se muestra en la fig 3.11. El argumento se restringe a ondas de choque de pequeña amplitud; la velocidad Δ^{\vee} de la placa es igual a la del agua que se encuentra entre el frente de onda y dicha placa. El frente inicia su movimiento hacia la izquierda tan pronto como lo hace la placa. La altura de la onda es Δ y y su velocidad c que normalmente es mucho mayor que Δ v.

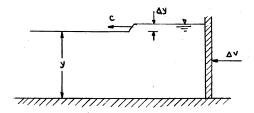


Fig. 3.11 Onda elemental de pequeña amplitud

El procedimiento normal de solución del problema es como se sugiere en el 1.2: el estado de flujo no permanente se cambia a permanente con el punto de vista del observador. Lo correcto es aplicar la ecuación de la cantidad de movimiento debido a que se disipa energía en el frente de onda; sin embargo, dado que la onda de choque es de pequeña amplitud, la disipación de energía es pequeña y puede usarse la ecuación de energía, como en el caso del problema 1.2, donde se obtuvo que $c = \sqrt{gy}$ (como en la onda oscilatoria).

Ambos argumentos se limitan a ondas largas de baja amplitud y este es el tipo de onda que se genera más a menudo en canales por la operación de controles y-

la existencia de obstrucciones. Se puede concluir que la velocidad de la onda $c = \sqrt{gy}$ es aquella con que un disturbio tiende a moverse sobre la superficie libre de un canal y que, por supuesto, es con relación al agua y no a los bordos del canal.

De la ec (3.4a), $V = \sqrt{g \, Y_C}$ en el estado crítico el agua se mueve conla misma velocidad (referida a los bordos) con que una onda, producida por un pequeño – disturbio, se movería con respecto al agua. Un frente de dicha onda parecería estaciona rio a un observador colocado sobre el bordo. En el caso de que la onda se moviera hacia aguas arriba y hacia aguas abajo, el frente que se dirige en esta última dirección parecería al observador como si se moviera con el doble de velocidad que el agua. Por ello, – las ondas estacionarias "son características del flujo que está en estado crítico o próximo a él. En el caso de un régimen subcrítico la velocidad es $V \neq \sqrt{g \, Y_C}$ y la onda producida por un disturbio puede moverse hacia aguas arriba. Cuando el régimen es supercrítico, $V \neq \sqrt{g \, Y_C}$, la onda es arrastrada hacia aguas abajo y ningún disturbio puede propagar-su influencia hacia aguas arriba.

De acuerdo con estas consideraciones, un flujo subcrítico está sujeto a – un "control" desde aguas abajo, debido a que cualquier disturbio puede transmitirse en di rección hacia aguas arriba. Si el flujo es supercrítico, no puede quedar influenciado por ninguna situación desde aguas abajo, quedando controlado desde aguas arriba. Por estas-razones, entre los ingenieros prácticos se acostumbra decir que "en flujo supercrítico el – agua no sabe lo que está ocurriendo del lado aguas abajo".

CAPITULO 4. SALTO HIDRAULICO

4.1 Aspectos generales

Consideremos el comportamiento del flujo en un ca nal de sección uniforme cuya pendiente de plantilla se incrementa gradualmente de $\rm S_0 < \rm S_C$ a $\rm S_0 > \rm S_C$ (fig 5.1 a). Siendo el gasto constante y la sección uniforme, la línea de tirante crítico es paralela a la plantilla y en la parte superior del descenso, el perfil de la superficie libre queda por encima-de la linea de tirante crítico y la energía específica es mayor que la minima. El tirante (y con él la energía específica) disminuye continuamente a medida que aumenta la pendiente y se alcanzan las condiciones críticas en el punto en que la -pendiente es la crítica $(S_0 = S_c)$. La reducción que experimen ta la energía específica, desde el valor inicial en el canalhasta la mínima en la sección crítica, se disipa por el efecto de fricción. De la sección crítica en adelante, el tirante continúa disminuyendo con el incremento de pendiente, el cual abastece de mayor energia al flujo que la que se disipa por -fricción.

En el caso de intersección brusca de las dos pendientes (nuevamente de subcrítica a supercrítica) (fig. 4.1b) el efecto general es muy similar al del caso anterior aunque-es factible que el perfil de la superficie se altere todavíamás en la zona de transición. Aguas arriba de la intersección el tirante no puede, al menos teóricamente, ser menor que elcrítico, ya que esto requeriría el abastecimiento de energíadesde el exterior, lo cual no es posible mientras no se alcance la pendiente pronunciada.

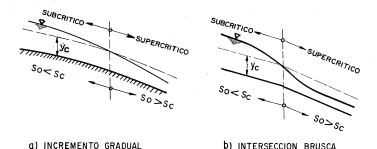


Fig 4.1 Transición de régimen subcrítico a

DE DOS PENDIENTES

De esta manera, se concluye que la transición de régimen subcrítico a supercrítico es gradual, acompañada depoca turbulencia y de pérdida de energía debida exclusivamente a la fricción en el movimiento. Dicho proceso puede sequirse al recorrer la curva E - y de la fig 3.2, desde un punto de la rama superior, que representa las condiciones -- originales de régimen subcrítico en el canal, a otro punto - sobre la rama inferior de la misma curva, que representa las

condiciones de régimen supercrítico aguas abajo .

DE PENDIENTE

Estudiemos ahora el proceso inverso de transición de régimen supercrítico a subcrítico. En el subcapítulo 3.2-se ha visto que esta transición puede ocurrir únicamente sise produce una reducción local del ancho del canal. Sin emerago, dicha transición también puede ocurrir si en el canal de sección uniforme hay una transición en la pendiente, cambiando de supercrítica a subcrítica, tal como ocurriría alpie de una rápida o caída (fig 4.2). El régimen, aguas arriba de la intersección, es supercrítico, mientras que, aguasabajo, la pendiente impone un tirante normal en régimen subcrítico; ocurriendo en algún punto intermedio la transición—entre ambos.

Para explicar el proceso de transición podemos - recurrir a un análisis semejante al del caso anterior. El -- flujo (inicialmente en régimen supercrítico) se frena por - efecto de la fricción y de la reducción de pendiente, aumenta gradualmente su tirante y disminuye su energía específica hasta alcanzar la condición crítica. Toda vez que aguas abajo

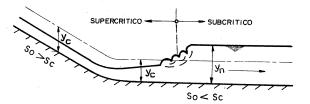


Fig. 4.2 Transición de régimen supercrítico a subcrítico

existe régimen subcrítico, esto implica que la energía específica del flujo debe ser mayor que la mínima. Sin embargo, una vez alcanzado el tirante crítico, no hay posibilidad de quela energía específica crezca por arriba de la mínima. Ello se debe a que la poca pendiente del canal no abastece al flujo de energía adicional. Esto impide continuar con una explicación semejante del fenómeno.

Para encontrar la forma de la transición del régi men se puede apelar a la evidencia experimental.la cual muestra con toda claridad que, por el contrario del caso anterior. la transferencia de régimen supercrítico a subcrítico es en-forma violenta y se acompaña de mucha turbulencia y gran pérdida de energía. Al entrar el aqua a la zona de nendiente -menor, se reduce la gran velocidad del flujo por efecto de la resistencia de fricción y se produce un incremento brusco del tirante que, virtualmente, rompe el perfil del flujo y produce un estado de gran turbulencia y una fuerte pérdida de ener qía. A cierta distancia aquas arriba del punto hipotético deintersección del perfil de la superficie libre (que se va ele vando) y la línea de tirante crítico. la energía específica-está ya en exceso de aquella que corresponde a la del flujo uniforme de aguas abajo; se produce así la discontinuidad y-la superficie libre se eleva rápidamente hasta el tirante nor mal. El salto ocurre con fuertes pulsaciones y como si el --aqua entrara en ebullición. indicación visible de la inclusión de aire. Después de un crecimiento irregular y brusco de la-superficie del agua, hasta alcanzar un tirante igual aproxima damente al normal yn en un tramo relativamente corto, el fren te turbulento se regulariza de manera inmediata y continúa -libremente en régimen subcritico.

La expansion turbulenta y desaceleración del chorro de gran velocidad están asociados con una pérdida apreciable de energía (disipada principalmente como calor) y la energía específica final frecuentemente es la apropiada para el --tirante normal.

La rápida variación del tirante toma lugar en un tramo relativamente corto y, por ello, la pérdida de fricción-en la frontera es relativamente pequeña y, en muchos casos, insignificante en comparación con la pérdida por la turbulen-cia del fenómeno.

El fenómeno antes descrito se conoce como "salto hidráulico u onda estacionaria" y representa la única manera enque es posible el cambio de régimen supercrítico a subcrítico. Ocurre frecuentemente al pié de la descarga de una compuerta—reguladora o de un cimacio o en un cambio de pendiente como el antes expuesto.

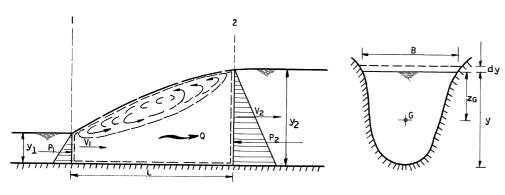
Aunque se utiliza más comúnmente en relación con los aforado-res de canales, algunos autores consideran más adecuado el nom
bre de"onda estacionaria"que el de "salto hidráulico" y para -ello argumentan dos razones: en primer lugar, las partículas-de agua tienen un movimiento como el de una onda giratoria --debajo del remolino superficial que se desarrolla (fig 4.3); en
segundo lugar, el remolino es estacionario debido a que la corriente misma en el extremo de aguas arriba del salto, arremete constantemente contra la corriente superficial que regresa,
sin existir movimiento del conjunto hacia aguas arriba. Se satisface así el requerimiento de que la velocidad de viaje de-la onda hacia aguas arriba es igual a la velocidad de la co--rriente hacia aguas abajo.

Normalmente, el salto hidráulico adquiere la forma directa descrita anteriormente e ilustrada en la fig 4.3a. -- Cuando el tirante de aguas abajo es ligeramente mayor que el - crítico, el salto adquiere el carácter de "ondular", para el--

cual las ondas ascienden y descienden con un movimiento os cilatorio amertiguado hasta que, finalmente, se obtienen las --condiciones permanentes del flujo aguas abajo (fig 4.3b). Existen, desde luego, muchas formas intermedias; pero la pérdida de -energía aumenta con la altura del salto y por tanto es menor - que en el tipo ondular.

Además de su gran mérito como disipador natural de energía, el salto hidráulico tiene muchos otros usos prácticos, entre los cuales se pueden mencionar los siguientes:




Fig. 4.3 Tipos de salto hidráulico

- a) Prevención o confinamiento de la socavación -- aguas abajo de las estructuras hidráulicas donde es necesario- disipar energía.
- b) El mezclado eficiente de fluidos o de sustan--cias químicas usadas en la purificación de aguas, debido a lanaturaleza fuertemente turbulenta del fenómeno. Este atributotiene ventajas particulares cuando se involucra la contamina-ción.
- c) Incremento del gasto descargado por una compue<u>r</u> ta deslizante al rechazar el retroceso del agua contra la compuerta. Esto aumenta la carga efectiva y con ella la descarga.
- d) La recuperación de carga aguas abajo de un aforador (ver capítulo 6.2) y mantenimiento de un nivel alto delaqua en el canal de riego o de distribución del agua.
- e) El aireamiento del agua destinada al abasteci-miento de ciudades.
- f) Remosión de bolsas de aire en líneas de abastecimiento de agua y prevención del atrape de aire.

Debido a que en principio se desconoce la pérdidade energía asociada con el salto hidráulico, la aplicación dela ecuación de energía antes y después del salto no proporciona un medio adecuado de análisis. For otra parte, debido a lagran variación de velocidad media entre los dos extremos delsalto y al hecho de que no se requiere conocer los cambios deenergía interna, es más adecuada la aplicación del principiode la cantidad de movimiento en el análisis del renómeno. La concordancia general entre los resultados teóricos y los experimentales confirman la seguridad de un análisis general delfenómeno con base en este principio, tal como se presenta a -continuación.

4.2 <u>La función "momentum"</u>

Consideremos un tramo horizontal de un canal de - sección transversal cualquiera donde se produce el salto hi-- dráulico y el volúmen de control limitado por las secciones - l y 2 (antes y después del salto), por el piso del canal y -- por la superficie libre (fig 4.4).

a) VOLUMEN DE CONTROL

b) SECCION TRANSVERSAL

Fig 4.4 Análisis del salto hidráulico

Para la aplicación de la ecuación de la cantidad de movimiento, consideramos que se satisfacen las siguientes-condiciones:

- a) El canal es horizontal y de sección constante
- b) Se desprecia la resistencia de fricción originada en la pared del canal, debido a la pocalonyitud del tramo en que se desarrolla el --salto.
- c) Dentro del tramo, no existe ningún obstáculoque pudiera ocasionar una fuerza de empuje -dinámico desde el exterior.
- d) Se considera que la distribución de velocidadades en las secciones 1 y 2 es prácticamenté uniforme y que los coeficientes β_1 = β_2 = 1.

$$P_1 - P_2 = \frac{\gamma_0}{q} (V_2 - V_1)$$

Si A representa el área de la sección, por el principio de continuidad la ecuación anterior se puede escribir de la manera siguiente:

$$P_1 - P_2 = \frac{\sqrt[3]{g^2}}{g} \left(\frac{1}{A_2} - \frac{1}{A_1} \right)$$
 (4.1)

Los empujes totales debidos a la presión hidrostática se pueden calcular como sigue:

$$P_1 = \gamma_{G_1} A_1$$

$$P_2 = \gamma z_{G_2} A_2$$

donde z_{G_1} y z_{G_2} son las profundidades de los centros de gravedad de las áreas en las secciones 1 y 2 respectivamente --- (fig. 4.4b). Por tanto, sustituyendo los valores de P_1 y P_2 en la ec (4.1) y simplificando, resulta que

$$\frac{Q^2}{g A_1} + z_{G_1} A_1 = \frac{Q^2}{g A_2} + z_{G_2} A_2$$
 (4.2)

En esta ecuación se observa que los términos antes y después del signo "igual" son análogos, pudiendo expresarlos mediante la función llamada "momentum":

$$M = \frac{Q^2}{g A} + z_G A$$

la cual se compone de dos términos: el primero representa lacantidad de movimiento del flujo que atraviesa la sección delcanal en la unidad de tiempo y por unidad de peso del agua; el segundo, el empuje hidrostático por unidad de peso y también el momento estático del área respecto de la superficie libre.-Debido a que ambos términos tienen las dimensiones de una fuer za por unidad de peso, a la función "momentum" se le conoce -también como "fuerza específica".

Para un gasto dado, la función m es únicamente del tirante, de manera similar a la energía específica. Su representación geométrica en un plano M - y consiste en una curvasimilar a la de E - y con la única diferencia que tiene asíntota exclusivamente en la rama inferior AC, correspondiente ay = 0 (fig 4.5). La rama superior BC se eleva y extiende indefinidamente a la derecha. Así mismo, para un valor dado de lafunción M, la curva tiene dos posibles tirantes y1 y y2 que reciben el nombre de "conjugados", y que, de acuerdo con la --ec (4.2) (M1 = M2), corresponde a los tirantes antes y después del salto de la fig 4.4.

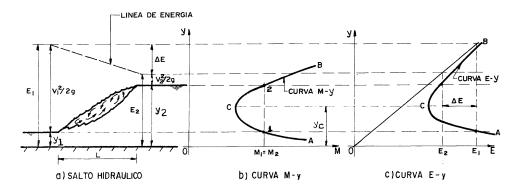


Fig. 4.5 Lurvas de momentum y energía específica para un salto hidráulico

El punto C de la fig 4.5b corresponde al mínimo de Momentum y sus condiciones se pueden obtener del criterio de la primera derivada de M en la ec (4.3), como - sique:

$$\frac{d M}{d y} = - \frac{Q^2}{q A^2} \frac{d A}{d y} + \frac{d(^2G A)}{d y} = 0$$

A un cambio dy en el tirante corresponde un -cambio d($z_u A$) en el momento estático del área hidráulica-respecto de la superficie libre (fig 4.4b), el cual es:

$$d(z_GA) = [A(z_G + dy) + B(dy)^2/2] - z_GA$$

Despreciando diferenciales de órden superior - $(dy)^2 = 0$, el cambio en el momento estático es: $d(z_GA) = A$ dy y la ecuación anterior resulta:

$$\frac{d M}{dy} = - \frac{Q^2}{dA^2} \frac{dA}{dy} + A = 0$$

Siendo B = dA/dy, la ecuación anterior se simplifica como sique:

$$\frac{Q^2}{q} = \frac{A^3}{q}$$

que es la condición de estado crítico (ec 3.4b). Esto significa que, para un gasto dado, el momentum mínimo corresponde también al tirante crítico y, por ello al estado ---

crítico (fig 4.5c). El tirante conjugado menor debe corresponder a régimen supercrítico y el mayor a subcrítico. Al referir los tirantes conjugados yl y yl (antes y después del salto a la curva de energía específica, en la fig 4.5c se observa que-corresponden a energías específicas \mathbf{E}_1 y \mathbf{E}_2 distintas, cuya diferencia $\Delta \mathbf{E}$ es la pérdida de energía interna debida a las turbulencias propias del salto hidráulico.

La discusión anterior permite llegar a las siguie<u>n</u> tes conclusiones:

- a) El cambio de régimen supercrítico a subcríticose produce de manera violenta (únicamente a tra vés del salto hidráulico), con pérdida aprecia ble de energía. El cambió de subcrítico a super crítico sí es posible de manera gradual (sin -salto) y sin perdida apreciable de energía.
- b) Para estudiar el fenómeno se requiere aplicar la ecuación de la cantidad de movimiento debido a que en principio se desconoce la pérdica de energía en el salto.
- c) De la aplicación de la ecuación de la cantidadde movimiento se concluye que el fenómeno se -produce únicamente cuando se iguala el momentum en las secciones antes y después del salto.
- d) Para un gasto dado, si el conjugado mayor y_1 -- (aguas arriba del salto) aumenta, el conjugadomenor y_2 (aguas abajo) disminuye.

4.3 Longitud del salto

La longitud del salto ha recibido gran atención de los investigadores pero hasta ahora no se ha desarrollado un aprocedimiento satisfactorio para su cálculo. Sin duda, esto se debe al hecho de que el problema no ha sido analizado teóricamente, así como a las complicaciones prácticas derivadas de la inestabilidad general del fenómeno y la dificultad en definiralas secciones de inicio y fin del salto.

Se acepta comúnmente que la longitud L del salto - se defina como la distancia medida entre la sección de inicio-y la sección inmediatamente aguas abajo en que termina la zona turbulenta (fig 4.5a).

Según el U. S. Bureau of Reclamation, la longitud — del salto en un canal rectangular horizontal varía de acuerdo—con la tabla 4.1, o bien curva $S_0=0$ en la fiq4.31.

Tabla 4.1 Longitud del salto en canales rectangul<u>a</u>

					•					
$f_{r_1} = V_1 / \sqrt{g y_1}$	1.7	2	2.5	3	3.5	4	5	6	8	10
L/y ₂	4	4.35	4.85	5,28	5.55	5.8	6	6.1	6.12	6.1

La longitud del salto en un canal trapezoidal es - mayor debido a la asimetría que se produce por efecto de la -- distribución no uniforme de las velocidades.

Según Sieñchin (ref 17) vale que:

$$L = A (y_2 - y_1)$$

donde A depende del talud del canal según la tabla 4.2

Tabla 4.2 Coeficiente A en la fórmula de Sieñchin - para la longitud del salto en canales trapeciales.

ſalud k	0	0.5	0.75	1	1.25	1.5
Α	5	7.9	9.2	10.6	12.6	15

Según msing, la longitud del salto en un canal tra pecial es mucho mayor, de acuerdo con la siguiente fórmula:

$$L = 5 y_2 (1 + 4 \sqrt{(y_2 - y_1)/y_1})$$

4.4 Ecuaciones del salto para diferentes formas de sección

4.4.lEcuación general

Aunque la condición general para que ocurra el salto está expresada por la ec (4.2), para cualquier forma geométrica de la sección conviene desarrollar ecuaciones particulares para las secciones más usuales que, aunadas a sus representaciones gráficas, permitan el cálculo directo del conjugado mayor, a partir de las condiciones en la sección de conjugado menor o viceversa (ref 18).

En cualquier forma de sección, la profundidad $z_{\tilde{G}}$ de su centro de gravedad se puede calcular de la ecuación.

donde k' es un coeficiente que depende de la geometría de la -sección. Por tanto, la ec (4.2) se puede escribir como sique:


$$A_2 k'_2 y_2 - A_1 k'_1 y_1 - \frac{Q^2}{g} (\frac{A_2 - A_1}{A_1 A_2}) = 0$$
 (4.4)

que es la ecuación general del salto hidráulico en un canal desección transversal cualquiera.

4.4.2 Sección rectangular

a) Régimen supercrítico conocido

En una sección rectangular de ancho de plantilla b y tirante y (fig 4.6), se tienen los siguientes valores:

$$A = by$$

$$k' = \frac{1}{2}$$

que al subtituir en la ec (4.4a), se obtiene:

$$\frac{b y_2^2}{2} - \frac{b y_1^2}{2} - \frac{g^2}{gb} (\frac{y_2 - y_1}{y_1 y_2}) = 0$$

o bien, simplificando resulta:

$$\dot{y}_2 + y_1 - \frac{2 q^2}{g b^2 y_1 y_2} = 0 (4.5)$$

Multiplicando la ecuación anterior por y_2/y_1^2 y or denando términos se tiene:

$$\left(\frac{y_2}{y_1}\right)^2 + \frac{y_2}{y_1} - \frac{2 q^2}{g b^2 y_1^3} = 0 \tag{4.6}$$

en la cual, con el último término se pueden hacer las siguientes simplificaciones: 2 ... 2

$$\frac{2 \cdot 0^{2}}{g \cdot b^{2} \cdot y_{1}^{3}} = \frac{2 \cdot v_{1}^{2}}{g \cdot y_{1}} = 2 \cdot F_{\mathbf{r}_{1}}^{2}$$

donde $F_{r_1} = V_1 / \sqrt{g \ y_1}$ es el número de Froude antes del salto.-Por tanto, la ec (4.6) resulta:

$$\left(\frac{y_2}{y_1}\right)^2 + \frac{y_2}{y_1} - 2 F_{r_1}^2 = 0$$

cuya solución es:

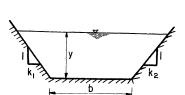
$$\frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 8 F_{r_1}^2} - 1 \right) \tag{4.7}$$

La ec (4.7) permite calcular el tirante conjugado mayor en un canal de sección rectangular, conocido el menor y el número de roude $F_{{\bf r}_1}$ antes del salto.

b) Régimen subcrítico conocido

Si la ec (4.5) se multiplica ahora por y_1/y_2^2 yen los pasos subsecuentes se hacen consideraciones análogas a las anteriores, se obtiene la ecuación:

$$\frac{y_1}{y_2} = \frac{1}{2} \left(\sqrt{1 + 8 F_{r2}^2} - 1 \right)$$
 (4.8)


que permite calcular el conjugado menor, conocido el mayor y el número de Froude $F_{r_2} = V_2/\sqrt{g}\,y_2$ después del salto.

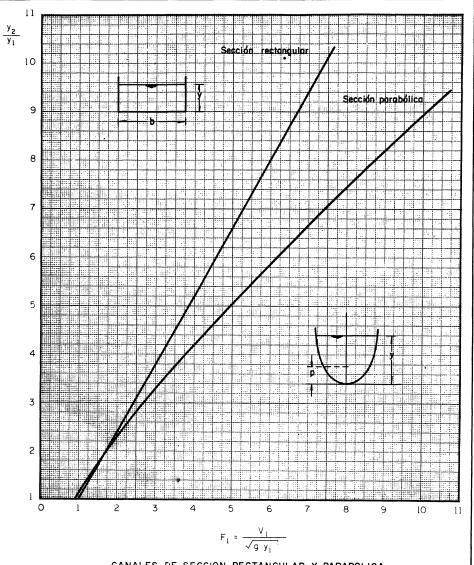
Las figs 4.6 y 4.7 muestran las curvas que representan a las ecs (4.7) y (4.8) respectivamente y que permiten un cálculo directo de los tirantes conjugados en la sección—rectangular.

4.4.3 Sección trapecial

a) Régimen supercrítico conocido

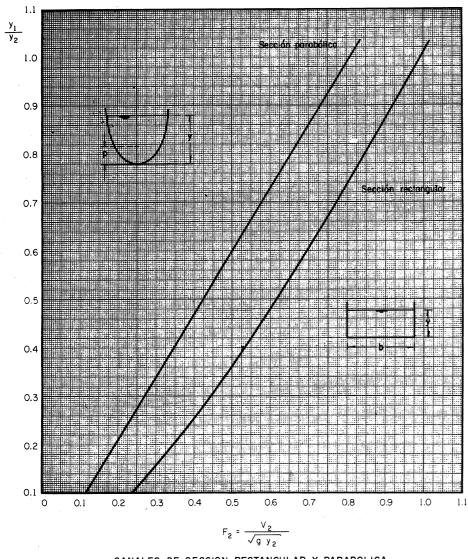
Para esta sección, de taludes $k_1y_2(fig4.8)$, setienen los siguientes valores:

A = b y + k y²


donde k =
$$\frac{k_1 + k_2}{2}$$
, además

 $k' = \frac{1}{3} + \frac{1}{6} \frac{b}{b + ky} = \frac{1}{3} + \frac{1}{6} \frac{b \cdot y}{A}$

Fig 4.8 Sección trapecial


Antes de substituir en la ec (4.4), conviene escr $\underline{\mathbf{i}}$ birla como sigue

$$A_2^2 k_2^1 y_2 - A_1 A_2 k_1^1 y_1 - \frac{Q^2}{g} \left(\frac{A_2 - A_1}{A_1} \right) = 0$$
 (4.4a)

CANALES DE SECCION RECTANGULAR Y PARABOLICA

Fig. 4.6 Gráfica para la determinación del tirante subcrítico, conocido el régimen supercrítico

CANALES DE SECCION RECTANGULAR Y PARABOLICA

Fig. 4.7 Gráfica para la determinación del tirante supercrítico, conocido el régimen subcrítico

Por tanto, al sustituir resulta:

$$\frac{\left(\frac{b y_2 + k y_2^2}{3}\right)^2 y_2}{3} + \frac{b (by_2 + ky_2^2) y_2^2}{6} - \frac{(by_1 + ky_1^2) (by_2 + ky_2^2) y_1}{3} - \frac{b(b y_2 + k y_2^2) y_1^2}{6}$$

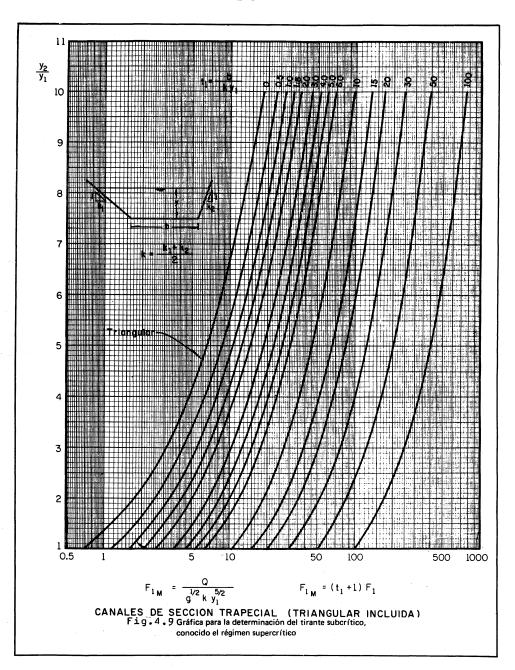
$$- \frac{q^2}{g} \left[\frac{(by_2 + k y_2^2) - (b y_1 + k y_1^2)}{b y_1 + k y_1^2} \right] = 0$$

Al multiplicar la ecuación por $3/k^2$ y_1^5 y simplificar, llamando

$$F_{M_{1}}^{2} = \frac{q^{2}}{g k^{2} y_{1}^{5}} \quad y \quad t_{1} = \frac{b}{k y_{1}}, \text{ se obtione:}$$

$$\left(\frac{y_{2}}{y_{1}}\right)^{5} + \frac{5}{2} t_{1} \left(\frac{y_{2}}{y_{1}}\right)^{4} + \frac{3}{2} t_{1}^{2} \left(\frac{y_{2}}{y_{1}}\right)^{3} - \left(\frac{3}{2} t_{1} + \frac{3}{t_{1} + 1} + 1\right)$$

$$\left(\frac{y_{2}}{y_{1}}\right)^{2} - \left(\frac{3}{2} t_{1}^{2} + t_{1} + \frac{3 t_{1} F_{M_{1}}^{2}}{t_{1} + 1}\right) \quad \frac{y_{2}}{y_{1}} + 3 F_{M_{1}}^{2} = 0$$


El grado de la ecuación se reduce al dividir entre $(\frac{y_2}{y_1}-1)$ resultando finalmente:

$$\left(\frac{y_2}{y_1}\right)^4 + \left(\frac{5}{2} t_1 + 1\right) \left(\frac{y_2}{y_1}\right)^3 + \left(\frac{3}{2} t_1^2 + \frac{5}{2} t_1 + 1\right) \left(\frac{y_2}{y_1}\right)^2 - \left(-\frac{3}{2} t_1^2 - t_1 + \frac{3}{t_1 + 1}\right) \left(\frac{y_2}{y_1}\right) - 3 F_{M_1}^2 = 0$$

$$(4.9)$$

La ec (4.9) es de cuarto grado con una sola raíz - positiva real que permite conocer el conjugado mayor, conocidos: el menor, el parámetro de Massey $\mathbf{F}_{M_1} = \frac{Q}{\sqrt{g} \, \mathbf{k} \, \mathbf{y}_1^{5/2}}$, $\mathbf{y}, \mathbf{t}_1 = \mathbf{b}/\mathbf{k} \mathbf{y}_1 \cdot \mathbf{y$

Para simplificar la solución se puede recurrir a la gráfica de - la fig 4.9.

b) Régimen subcrítico conocido

Para calcular las condiciones del fégimen subcrítico (antes del salto), conocidas las del supercrítico (después - del salto), se puede escribir la ec (4.4) como sique:

$$A_1 A_2 k_2^{\dagger} y_2 - A_1^2 k_1^{\dagger} y_1 - \frac{q^2}{g} (\frac{A_2 - A_1}{A_2}) = 0 \quad (4.4b)$$

y después hacer desarrollos análogos para obtener la siguiente-

$$(\frac{y_1}{y_2})^4 + (\frac{5}{2} t_2 + 1) (\frac{y_1}{y_2})^3 + (\frac{3}{2} t_2^2 + \frac{5}{2} t_2 + 1) (\frac{y_1}{y_2})^2 + (\frac{3}{2} t_2^2 + t_2 - \frac{3^F M_2}{t_2 + 1}) \frac{y_1}{y_2} - 3^F M_2^2 = 0$$
 (4.10)

donde

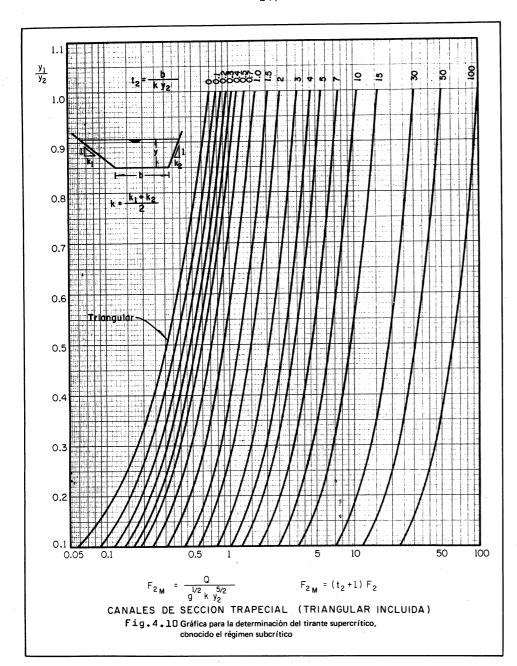
$$F_{M_2} = \frac{Q}{\sqrt{g} k y_2^{5/2}}$$
; $t_2 = \frac{b}{k y_2}$

La solución gráfica de esta ecuación se presenta en la fig 4.10 para facilitar el cálculo.

4.4.4 Sección circular

Para este tipo de sección cabe la posibilidad de que se llene totalmente después del salto, por lo cual existen doscasos diferentes.

4.4.4.1 Flujo a superficie libre antes y después del salto.


Para cualquier valor del tirante, el área hidráulica es (fig 4.11):

$$A = (\frac{\theta}{4} - \frac{1}{4} \operatorname{sen} \theta \cos \theta) \mathbf{D}^2$$

Siendo:

$$sen \theta = \frac{2\sqrt{Dy - y^2}}{D} = 2\sqrt{\frac{y}{D} - \frac{y^2}{D^2}}$$

$$\cos \theta = \frac{D/2 - y}{D/2} = 1 - 2 \frac{y}{D}$$

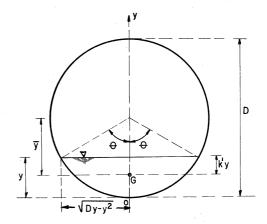


Fig 4.11 Sección circular

Al sustituir en la ecuación del área, resulta:

$$m = \frac{A}{D^2} = \frac{1}{4} \text{ ang cos} \left[1 - \frac{2y}{D} \right] - \left[\frac{1}{2} \left(1 - \frac{2y}{D} \right) \sqrt{\frac{y}{D} - \frac{y^2}{D^2}} \right] (4.11)$$
Por otra parte, el coeficiente k' se obtiene de
$$k' \ y = \frac{1}{y} - \left(\frac{D}{2} - y \right)$$

donde:

$$\bar{y} = \frac{2 R^3 Sen^3 \Theta}{3A} = \frac{2 D (\frac{y}{D})^{3/2} (1 - \frac{y}{D})^{3/2}}{3 m}$$

Por tanto, resulta que:

$$k' = 1 - \frac{1}{2} \frac{D}{y} + \frac{2(1 - \frac{y}{D})^{3/2}(\frac{y}{D})^{1/2}}{3m} (4.12)$$

a) Régimen supercrítico conocido

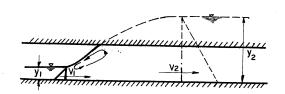
De la ec (4.4) se tiene que:

$$m_2^2 D^4 k_2^i y_2 = m_1 m_2 D^4 k_1^i y_1 = \frac{Q^2}{g} (\frac{m_2 - m_1}{m_1})$$

Al dividir entre y_1^5 y despejar se obtiene

$$\frac{\mathbb{Q}^{2}}{g y_{1}^{5}} = \frac{\mathbb{m}_{1} \mathbb{m}_{2} k_{2}^{1} \left(\frac{y_{2}}{y_{1}}\right) - \mathbb{m}_{1}^{2} k_{1}^{1}}{\left(\frac{y_{1}}{y_{1}}\right)^{4} \left(\mathbf{f} - \frac{\mathbb{m}_{1}}{\mathbb{m}_{2}}\right)}$$
(4.13)

donde m₁, m₂, k'₁ y k'₂ están dados por las ecs (4.11) y -- (4.12) eligiendo para y el subíndice que corresponda; estoes, y₁ si se trata de m₁ y k'₁, y y₂ si se trata de m₂ y k'₂ .


b) Régimen subcrítico conocido

Por un desarrollo análogo al anterior, se obtiene la siquiente ecuación:

$$\frac{g^2}{g y_2^5} = \frac{m_2^2 k_2^1 - m_1 m_2 k_1^1 (\frac{y_1}{y_2})}{(\frac{y_2}{D})^4 (\frac{m_2}{m_1} - 1)}$$
(4.14)

4.4.4.2 Flujo a presión después del salto

En este caso, vale también la ec (4.4), siempre – que $\rm A_2$ corresponda al área total llena, $\rm y_2$ a la altura del –- gradiente de presiones en la sección 2 (fig 4.12). Esto equi-

vale a que m₂ y k½--sean constantes de -valor:

$$m_2 = \frac{97}{4}$$
 (4.15)

$$k_2' = 1 - \frac{1}{2(\sqrt{y_2}/D)} (4.16)$$

Fig. 4.12 Salto hidráulico forzado en un conducto circular

Por tanto, es válida la ec (4.13) para el régimen supercrítico conocido y la ec (4.14) para el subcrítico, — conocido; siempre que m_2 y k_2^1 se calculen de las ecs (4.15) y-(4.16). Las figs 4.13 y 4.14 permiten una solución gráfica— sencilla para los casos antes analizados, donde se ha utiliza do el parámetro $\frac{1}{\sqrt{q}}$

4.4.5 Sección herradura

Para calcular el área, conviene dividir la sección en tres zonas como se muestra en la fig 4.15.

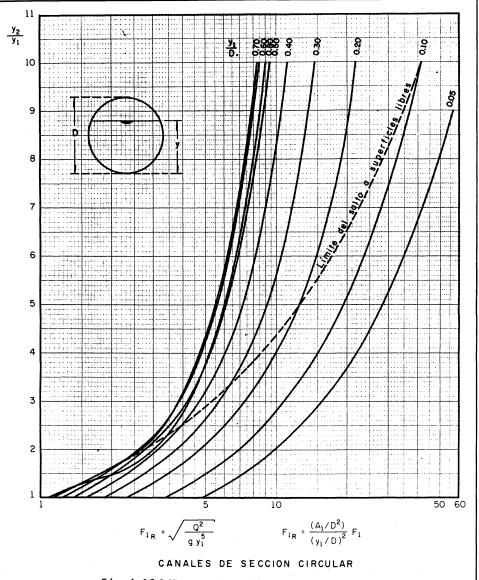
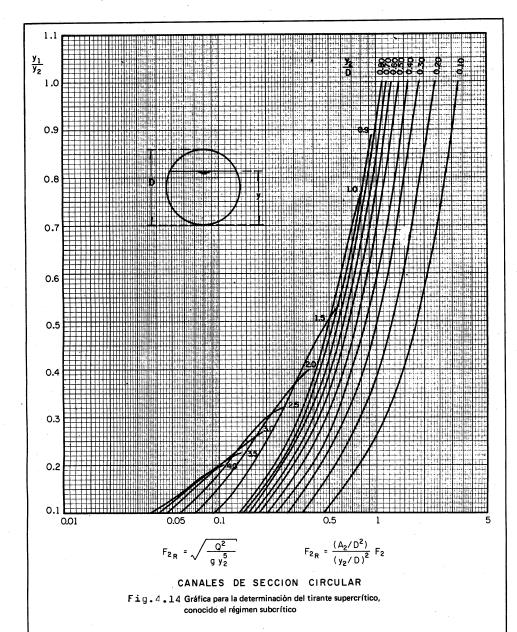



Fig. 4.13 Gráfica para la determinación del tirante subcrítico, conocido el régimen supercrítico

0.4114D b D 0.0886D D

Zona a . Para $y \le 0.0886$ D En esta zona son válidas ecuaciones similares a las (4.11)-y (4.12), con la única diferencia que en este caso el radioes igual al diámetro (R = U). Esto es, se consideran válidas las siguientes ecuaciones:

Fig 4.15 Sección herradura

$$m_a = \frac{A_a}{D^2} = \left[\text{áng cos} \left(1 - \frac{y}{D} \right) \right] - \left[2 \left(1 - \frac{y}{D} \right) \sqrt{\frac{y}{2D} - \frac{y^2}{4D^2}} \right]$$
 (4.17)

$$k_a' = 1 - \frac{D}{y} + \frac{2(1 - \frac{y}{2D})^{3/2}(\frac{y}{2D})^{1/2}}{\frac{3}{4}m_a}$$
 (4.18)

Cuando y = 0.0886 D, $m_a = 0.04906 y k_a^1 = 0.40203$

zona b. Para 0.0886 D ≠ y ≠ 0.5D

Para el área hidráulica con tirantes dentro de lazona b, se tiene:

$$m_{b} = \frac{A_{b}}{D^{2}} = 0.9366240398 - \frac{y}{D} - (0.5 - \frac{y}{D}) \sqrt{0.75 + \frac{y}{D} - (\frac{y}{D})^{2}} - \text{ang sen}(0.5 - \frac{y}{D})$$
 (4.19)

y el coeficiente k'

$$k_{b}' = \frac{1}{m_{b}(\frac{y}{D})} \left\{ 0.9366240398(\frac{y}{D}) - 0.5(\frac{y}{D})^{2} - 0.9107993196 + \frac{1}{3} \overline{\left[2.25 + (\frac{y}{D})^{2} - \frac{y}{D}\right]} \sqrt{0.75 + \frac{y}{D} - (\frac{y}{D})^{2}} \right\}$$

$$+(0.5-\frac{y}{D})$$
 ang sen $(0.5-\frac{y}{D})$ (4.20)

zona c. Para 0.5D≤y≤D

$$m_c = \frac{A_c}{D^2} = 0.043924958 + 0.25 \text{ ang } \cos(1-2\frac{y}{D}) - 0.5 \left[1-2\frac{y}{D}\right] \left[\frac{y}{D} - (\frac{y}{D})^{\frac{2}{D}}\right]^{\frac{1}{2}} \dots (4.21)$$

$$k_{c}' = \frac{1}{m_{c}(\frac{y}{D})} \left\{ \frac{1}{4} (\frac{y}{D} - 0.5) \text{ ang } \cos(1 - \frac{y}{D}y) + (\frac{y}{D} - 0.5)^{2} \sqrt{\frac{y}{D}} - (\frac{y}{D})^{2} + \frac{2}{3} \left[\frac{y}{D} - (\frac{y}{D})^{2} \right]^{3/2} - 0.006116445 + 0.043924958 \frac{y}{D} \right\} \dots (4.22)$$

$$A = 0.829323 \text{ p}^2$$

$$k' = 0.519107$$

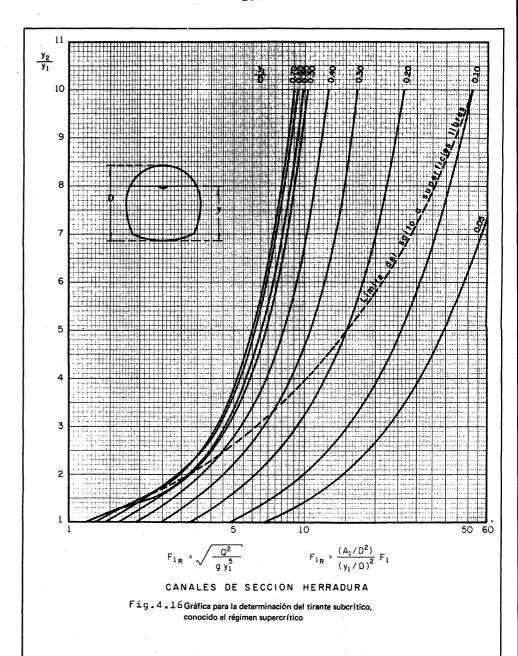
4.4.5.1 Flujo a superricie libre antes y después del salto

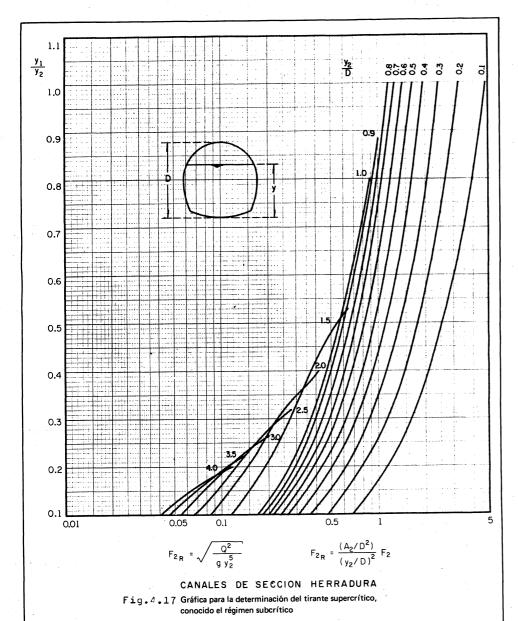
a) Régimen supercrítico conocido

rara la sección herradura también vale la ec (4.13), si m y $k^{\,\prime}$ se obtienen de las ecs (4.17) a (4.22).

b) Régimen subcrítico conocido

Vale también la ec (4.14) si m y k' se obtienen - de las ecs (4.17) a (4.22).

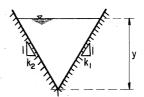

4.4.5.2 Flujo a presión después del salto


se utiliza la ec (4.13) para régimen supercrítico conocido y la ec (4.14) para régimen subcrítico conocido, siem pre que m $_1$ y k $_1^1$ se calculen con las ecuaciones que correspondan, de acuerdo con la zona de la succión de que se trate. Invariablemente m $_2$ y k $_2^1$ adoptin los valores constantes siguientes:

$$m_2 = 0.829323$$

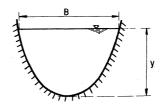
$$\kappa_2^1 = 1 - 0.480893(D/y_2)$$

donde y_2 es la altura del gradiente de presiones en la sección 2, segun lo indica la fig 4.12.



La solución gráfica del problema se presenta en las figs 4.16 y 4.17 para los casos antes analizados, donde-se ha utilizado el parámetro $~\mathbb{Q}/~\sqrt{g~y^5}$.

No se conocen las características del salto hidráu lico en secciónes circular y herradura cuando $(y_1/D) > 0.8$. Por esta razón, en las gráficas correspondientes se consider<u>a</u> ron solament, valures $0 \leqslant y_1/0 \leqslant 0.8$. En las gráficas de régimen subcrítico conocido, algunas curvas no alcanzan el valor $y_1/y_2 = 1$ debido a la limitución de la variable $(y_1/y)_m$ = 0.8. En las gráticas de régimen supercrítico conocido se ind<u>i</u> ca el lugar geométrico de los puntos límites del salto a su--perficie libre y en las gráticas de régimen subcrítico conoci do la curva límite es $y_2/D = 1$.


4.4.6 Sección triangular

Para una seccion triangular. como en la fig 4.18, es suficiente hacer b = 0 en la solu ción de las ecs (4.9) y (4.10), o en las figs 4.9 y 4.10 co-rrespondientes a la sección trapecial.

Fig. 4.18 Sección triangular

4.4.7 Sección parabólica

a) Régimen supercrítico conocido. En una sección parabóli ca el área vale:

$$A = \frac{2}{3} \quad By$$

siendo también $k' = \frac{2}{5}$

multiplicando la ec (4.4) por

Fig. 4.19 Sección parabólica $B_1 A_2/A_1^3$

$$B_1 A_2/A_1^3$$

se obtiene:

Por otra parte, el cuadrado del número de Froude - - en la sección l vale:

$$F_{\mathbf{r}_{1}}^{2} = \frac{v_{1}^{2}}{g Y_{1}} = \frac{q^{2} B_{1}}{g A_{1}^{3}}$$

siendo también

$$\frac{B_1}{A_1} = \frac{3}{2 y_1}$$
; $(\frac{B_2}{B_1})^2 = \frac{y_2}{y_1}$

$$\frac{A_2}{A_1} = \frac{B_2 y_2}{B_1 y_1} = (\frac{y_2}{y_1})^{3/2}$$

al subtituir resulta:

$$\frac{3}{5} \left(\frac{y_2}{y_1}\right)^3 \frac{y_2}{y_1} - \frac{3}{5} \left(\frac{y_2}{y_1}\right)^{3/2} - F_{r_1}^2 \left(\frac{y_2}{y_1}\right)^{3/2} + F_{r_1}^2 = 0$$

que al ordenar, se tiene:

$$\left(\frac{y_2}{y_1}\right)^4 - \left(\frac{5}{3} F_{r_1}^2 + 1\right) \left(\frac{y_2}{y_1}\right)^{3/2} + \frac{5}{3} F_{r_1}^2 = 0$$
 (4.23a)

Por otra parte, el número de Froude $F_{r_1}^2$ tembién es: $F_{r_1}^2 = \frac{V_1^2}{g Y_1} = \frac{V_1^2 B_1}{g A_1} = \frac{3 V_1^2 B_1}{2g B_1 V_1} = \frac{3}{2} F_1^2$

donde $F_1^2 = V_1^2/g$ y₁. Sustituyendo en la ecuación anterior, resu<u>l</u> ta:

$$\left(\frac{y_2}{y_1}\right)^4 - \left(\frac{5}{2}F_1^2 + 1\right) \left(\frac{y_2}{y_1}\right)^{3/2} + \frac{5}{2}F_1^2 = 0$$
 (4.23b)

La solución gráfica de esta ecuación se presenta enla fig 4.6 para facilitar el cálculo.

b) Régimen subcrítico conocido

Por un desarrollo análogo al de la ec (4.23) se de-muestra la siguiente ecuación:

$$\left(\frac{y_1}{y_2}\right)^4 - \left(\frac{5}{3} F_{r_2}^2 + 1\right) \left(\frac{y_1}{y_2}\right)^{3/2} + \frac{5}{3} F_{r_2}^2 = 0$$
 (4.24a)

o bien:

$$\left(\frac{y_1}{y_2}\right)^4 - \left(\frac{5}{2} F_{2}^2 + 1\right) \left(\frac{y_1}{y_2}\right)^{3/2} + \frac{5}{2} F_{2}^2 = 0$$
 (4.24b)

La fig 4.7 presenta una solución gráfica de estaecuación para facilitar el cálculo.

<u>Problema 4.1</u> Un canal rectangular de 15 m de ancho se iniciaal pié de un cimacio que tiene una altura de 4.27 m (del pisoa la cresta) como se muestra en la fig 4.20. Dicho cimacio tie ne la misma longitud de cresta que el ancho del canal y, con una carga h = 2.43 m sobre la misma, deberá descargar un gasto Q = 112.5 m³/seq.

El canal será excavado en tierra con un factor derugosidad de Manning n = 0.025 y el régimen en flujo uniformedebe ser subcrítico. Determinar la pendiente necesaria en el canal para que el salto hidráulico principie justo al pié de la caída, así como la longitud L de la zona que debe revestirse.

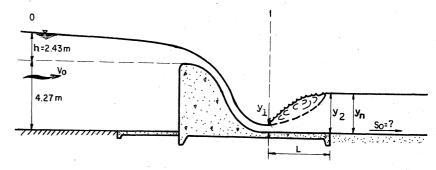


Fig 4,20 Estructura hidráulica del problema 4.1

Solución

El tirante y al píé del cimacio queda obligado por el gasto y la altura de caída. Dicho tirante debe ser el conju gado menor del salto para que éste se inicie al píé del cimacio. Dicho tirante producirá un conjugado mayor y2 el cual debe ser el tirante normal en el canal para impedir que se mueva el salto; esto es, si y2> yn el salto se "correría" hacia ---- aguas abajo y si y2< yn el salto se "correría" hacia aguas arriba.

El gasto unitario vale:

$$q = \frac{112.5}{15} = 7.5 \text{ m}^3/\text{seg/m}$$

La velocidad V_0 con que el agua se aproxima al cima

cio es

$$V_0 = \frac{7.5}{6.7} = 1.119 \text{ m/seg}$$

y la carga de velocidad: $V_0^2/2g = 0.064$

El tirante vale

$$y_c = \sqrt[3]{\frac{(7.5)^2}{9.8}} = 1.79 \text{ m}$$

Aplicando la ecuación de energía entre la sección - "O" próxima al cimacio y la l al pié del mismo considerando como pérdida de energía por fricción sobre el cimacio: $0 \cdot 1 V_1^2/2g$, se tiene que:

$$4.27 + 2.43 + 0.064 = y_1 + \frac{v_1^2}{2g} + 0.1 \frac{v_1^2}{2g}$$

o bien:

$$6.764 = y_1 + \frac{q^2 \times 1.1}{2g y_1^2}$$

$$6.764 = y_1 + \frac{(7.5)^2 \times 1.1}{2g y_1^2}$$

cuya solución para régimen supercrítico es $y_1 = 0.723$ m.

La velocidad en la sección l es entonces:

$$V_1 = \frac{7.5}{0.723} = 10.373 \text{ m/seg}; \quad \frac{V_1^2}{2g} = 5.49 \text{ ; } E_1 = 6.213 \text{ m}$$

y el número de Froude en esa sección resulta:

$$F_{r_1} = \frac{10.373}{9.8 \times 0.723} = 3.897$$

y de la ec (4.7) el conjugado mayor vale:

$$y_2 = \frac{0.723}{2}$$
 ($\sqrt{1 + 8 \times (3.897)^2}$ - 1) = 3.639 m

siendo la velocidad y carga de velocidad respectivamente:

$$V_2 = \frac{7.5}{3.639} = 2.061 \text{ m/seg}; \frac{V_2^2}{2g} = 0.217 \text{ m}$$

y la pérdida de energía en el salto:

$$\Delta h = E_1 - E_2 = 6.213 - (3.639 + 0.217) = 2.357 m$$

El tirante normal en el canal debe ser: $y_n = 3.639m$.

Los elementos geométricos en la sección del canal --

son

A = 15 x 3.639 = 54.585 m²

$$P = 15 + 2 x 3.639 = 22.278 m$$

$$R_h = \frac{54.585}{22.278} = 2.450; R_h^{2/3} = 1.817$$

De la fórmula de Manning; la pendiente necesaria es:

$$S_0 = \left(\frac{0.0}{A R_h^{2/3}}\right)^2 = \left(\frac{112.5 \times 0.025}{54.585 \times 1.817}\right)^2 = 0.000804$$

Al iniciarse el salto en la sección 1, deberá revestirse por lo menos hasta la sección 2 que es donde termina. Portanto, de acuerco con la tabla 4.1, resulta que $L/y_2 = 5.75$ y la distancia L vale:

$$L = 5.75 \times 3.639 = 20.92 \approx 21 \text{ m}$$

Se observa que si la pendiente 5 fuese menor que la calculada, se formaría un virante normal y y lo cual haría que el salto se corriera hacia aguas arriba ahogando el pié delvertedor (fig 4.21); por el contrario, si la pendiente 5 fueramayor que la calculada: y < y $_2$, el salto se correría hacia aguas abajo y su lugar de formación correspondería a aquel en el que se satisfacieran las condiciones de igualdad de "momentum", entre las secciones antes y después del salto (fig 4.22). (Vease problema 5.6).

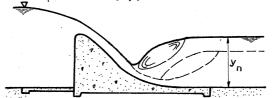
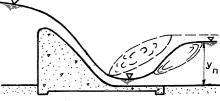



Fig 4.21 Salto "ahogado"

rig 4.22 Salto "barrido"

<u>Problema 4.2</u> La compuerta deslizante mostrada en la fig 4.23 - tiene un ancho b=3 m y una abertura a=0.51 m. El tirante antes de la compuerta es de 1.90 m. Dicha compuerta regula las -- descargas a un canal rectangular del mismo ancho que será excavado en tierra (n=0.025). Calcular la pendiente necesaria endicho canal de manera que se tenga un flujo uniforme subcrítico con una descarga libre de la compuerta (salto hidráulico normal), así como la longitud L que deberá tener el revestimiento de concreto para impedir la erosión de la plantilla.

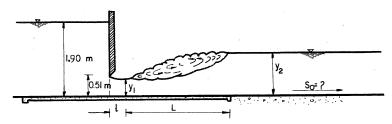


Fig 4.23 Descarga de la compuerta deslizante del -problema 4.2

Solución.

Es necesario calcular el gasto descargado por la --compuerta y para ello se requiere el coeficiente de descarga de la misma. La relación de tirante antes de la compuerta y la abertura vale: 1.90/0.51 = 3.725. De la fig 6.16 del Vol l dicho --coeficiente para descarga libre vale $C_d = 0.57$ y de la ec (6.25) del mismo volúmen el gasto resulta ser:

$$Q = 0.57 \times 3 \times 0.51 \sqrt{2 \times 9.8 \times 1.90} = 5.322 \text{ m}^3/\text{seg}$$

De la ec (6.27) del mismo volúmen, el coeficiente - de velocidad resulta

$$\mathbf{C_V} = 0.96 + 0.0979 \quad \frac{0.51}{1.9} = 0.986$$

y de la ec (6.26 b) el cooficiente de contracción es:

$$C_{c} = \frac{1 \times 0.51}{2 \times 1.9} \left(\frac{0.57}{0.986}\right)^{2} + \sqrt{\frac{1}{2} \frac{0.51}{1.90} \left(\frac{0.57}{0.986}\right)^{2}} + \left(\frac{0.57}{0.986}\right)^{2} = 0.625$$

De la ec 6.28 del Vol 1, la distancia "l" a la que se encuentra la sección contracta vale:

$$1 = \frac{0.51}{0.625} = 0.816 \text{ m}$$

y el tirante en dicha sección resulta:

$$y_1 = C_2 = 0.625 \times 0.51 = 0.3188 \text{ m}$$

Para que ocurra descarga libre y salto hidráulico -normal, éste se debe iniciar a partir de esta sección contracta,
siendo y₁ el conjugado menor. En dicha sección la velocidad es:

$$V_1 = \frac{5.322}{3 \times 0.3188} = 5.565 \text{ m/seg}$$

y el número de Froude resulta:

$$F_{r_1} = \frac{5.565}{\sqrt{9.8 \times 0.3188}} = 3.148$$

De la ec (4.7) se obtiene el tirante conjugado mayor que vale:

$$y_2 = \frac{0.3188}{2}$$
 ($\sqrt{1.+8 \times 3.148^2}$ - 1) = 1.269 m

Este tirante debe ser igual al normal en el canal. - El área, radio hidráulico y velocidad valen:

$$A = 3 \times 1.269 = 3.807 \text{ m}^2$$

$$R_{h} = \frac{3.807}{3 + 2 \times 1.269} = 0.687 \text{ m}$$

$$V = \frac{5.322}{3.807} = 1.398 \text{ m/seg}$$

La pendiente del canal debe ser entonces:

$$S_0 = \left(\frac{1.398 \times 0.025}{0.6872/3}\right)^2 = 0.002$$

Con F_{r_1} = 3.148; de la tabla 4.1 resulta que L/y₂ = 5.36 y la longitud vale:

$$L = 5.36 \times 1.269 = 6.8 \text{ m}$$

Problema 4.3. Un canal trapezoidal tiene un ancho de plantillabe 5 m, taludes k = 1 y para una pendiente S_0 = 0.0004, adopta un tirante normal y_n = 1.75 m en flujo uniforme para n = 0.025. Debido a razones topográficas, existe un tramo intermedio en el canal, con suficiente longitud y pendiente para que se establez ca también flujo uniforme pero supercrítico. Calcular la pendiente del tramo intermedio de manera que se produzca un saltoclaro inmediatamente después que termina dicho tramo (fig 4.24),

el cual deberá revestirse de concreto debido al aumento de velocidad (n = 0.015).

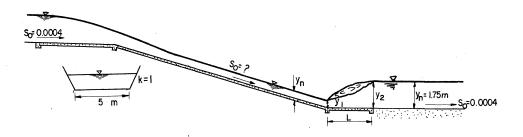


Fig 4.24 Esquema ilustrativo del problema 4.3

<u>Solución</u>

Para calcular el gasto en el canal, se determinana continuación los elementos geométricos de la sección para el tirante normal $y_n=1.75~\text{m}$

A =
$$(5 + 1 \times 1.75)$$
 1.75 = 11.8125 m²
P = 5 + 2 $\sqrt{2}$ × 1.75 = 9.9497 m
R_h = $\frac{11.8125}{9.9497}$ = 1.1872 m

La velocidad media y el gasto valen:

$$V = \frac{1}{0.025} (1.1872)^{2/3} (0.0004)^{1/2} = 0.897 \text{ m/seg}$$

$$Q = 11.8125 \times 0.897 = 10.5953 \text{ m}^3/\text{seg}$$

Es conveniente calcular el tirante crítico y; si-guiendo el procedimiento, se obtiene el valor del parámetro:

$$\frac{g_k^{3/2}}{b^{5/2}\sqrt{g}} = \frac{10.595 \times 1}{5^{5/2} \sqrt{9.8}} = 0.0605$$

De la fig 2.8 resulta que k $y_c/b = 0.146$, por lo-

tanto

$$y_c = \frac{0.146 \times 5}{1} = 0.73 \text{ m}$$

el cual es menor que el tirante normal $y_n=1.75\,$ m en el canal, por tanto el flujo uniforme es con régimen subcrítico.

Para forzar a un salto hidráulico que se inicie enla sección donde se efectúa el cambio de pendiente, el tiranteconjugado mayor debe ser igual al tirante normal en el canal. -Para determinar el conjugado menor calcularemos los siguientesparámetros:

$$F_{M_2} = \frac{0}{\sqrt{g} k y_2^{5/2}} = \frac{10.5953}{\sqrt{9.8} \times 1 \times 1.75^{5/2}} = 0.8354$$

$$t_2 = \frac{b}{k y_2} = \frac{5}{1 \times 1.75} = 2.8571$$

De la fig 4.10: $y_1/y_2 = 0.128$ y por tanto, el conjugado menor vale:

$$y_1 = 0.128 \times 1.75 = 0.224 \text{ m}$$

Si se requiere un valor más preciso se puede recurrir a la ec (4.10), la cual, al substituir los diferentes términos, resulta:

$$\left(\frac{y_1}{y_2}\right)^4 + 8.1428 \left(\frac{y_1}{y_2}\right)^3 + 20.3873 \left(\frac{y_1}{y_2}\right)^2 + 14.5588 \frac{y_1}{y_2} - 2.0937 = 0$$

La solución correcta es: $y_1/y_2 = 0.122$, esto es:

$$y_1 = 0.122 \times 1.75 = 0.2135 m$$

Este tirante debe ser el normal para el tramo intermedio; por tanto, los elementos hidráulicos de la sección -- son:

A =
$$(5 + 1 \times 0.2135)$$
 0.2135 = 1.1131 m²
P = $5 + 2\sqrt{2}$ 0.2135 = 5.6039 m
 $R_h = \frac{1.1131}{5.6039} = 0.199$ m

y para n=0.015, la pendiente necesaria en el tram intermedio vale:

$$S = \left(\frac{Qn}{A \kappa_h^{2/3}}\right)^2 = \frac{10.5953 \times 0.015}{1.131 (0.199)2/3} = 0.17591$$

La longitud L del revestimiento debe ser, como mínimo, la del salto hidráulico que, de acuerdo con la fórmula de - Sieñchin y la tabla 4.2 vale:

$$L = 10.6 (1.75 - 0.2135) = 16.29 m$$

Problema 4.4 Un canal trapezoidal de 2.50 m de ancho de plantilla, talud k = 0.5 y pendiente S_1 = 0.02 conduce un gasto ----- Q = 12 m³/seg y continúa a través de la montaña por un túnel de sección herradura de diámetro B = 3 m (fig 4.25). El canal está revestido de concreto con acabado liso (n_1 = 0.013) y el túnel-revestido de concreto de acabado regular (n_2 = 0.018).

- a) Calcular la pendiente S₂ necesaria para que se inicie un salto hidráulico en la sección del por
 tal de entrada.
- b) Si $S_2 = 0.01$, indicar qué ocurriría con el salto hidráulico.
- c) Calcular S₂ mínima que elimine el salto hidrául<u>i</u>
- d) Calcular el desnivel ∆z entre las dos seccionesque limitan la transición, asſ como la pendiente S₂ necesaria, de tal manera que se mantenga el mismo tirante del canal (normal) a lo largo de la transición y del túnel

Solución a.

Calcularemos el tirante crítico en el canal y en el túnel, así como el tirante normal en el primero.

Tirante crítico en el canal: Calculamos el siguiente parámetro:

$$\frac{\mathbf{q} k^{3/2}}{b^{5/2} \sqrt{\mathbf{q}}} = \frac{12 \times 0.5^{3/2}}{2.5^{5/2} \sqrt{9.8}} = 0.1371$$

De la fig 3.9 resulta que: k $y_c/b = 0.255$, por tanto:

$$y_c = \frac{0.255 \times 2.5}{0.5} = 1.275 \text{ m}$$

Tirante crítico en el túnel. Calculamos el siguiente parámetro

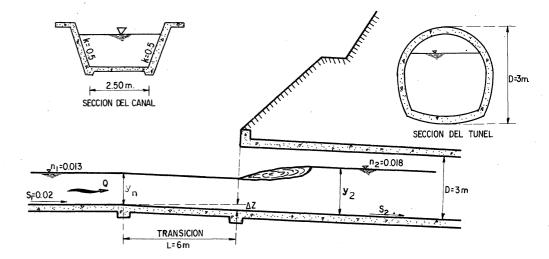


Fig 4.25 Esquema ilustrativo del problema 4.4.

$$\frac{0}{\sqrt{n}} \frac{12}{n^{5/2}} = \frac{12}{\sqrt{9.8} \times 3^{5/2}} = 0.2459$$

y de la tig 3.10 6 de la tabla 2.6 resulta que $y_c/D = 0.456$. - Por tanto:

$$y_c = 0.456 \times 3 = 1.368 \text{ m}$$

Tirante normal en el canal. Calculamos el módulo - de sección

$$\frac{Q n_1}{b^{8/3} s_1^{1/2}} = \frac{12 \times 0.013}{2.5^{8/3} \sqrt{0.02}} = 0.0958$$

De la fig 2.7 resulta que $y_n/b = 0.27$ y por tanto-el tirante normal es:

 $y_{\rm p}=0.27~{\rm x}~2.5=0.675~{\rm m}<1.275~{\rm m,el}~{\rm cual}~{\rm es}~{\rm me-nor}~{\rm que}~{\rm el}~{\rm critico}~{\rm y}~{\rm el}~{\rm régimen}~{\rm en}~{\rm el}~{\rm canal}~{\rm es}~{\rm supercritico}.~{\rm -El}~{\rm área}~{\rm hidráulica},~{\rm velocidad}~{\rm y}~{\rm carga}~{\rm de}~{\rm velocidad}~{\rm en}~{\rm el}~{\rm canal},$

respectivamente valen:

$$A_n = (2.5 + 0.5 \times 0.675) 0.675 = 1.9153 \text{ m}^2$$

$$V_n = \frac{12}{1.9153} = 6.265 \text{ m/seg}$$

$$\frac{v_n^2}{2q} = 2.035 \text{ m}$$

De esta manera, a partir de la ecuación de la energía, se puede calcular el tirante y_1 que se presentaría en el portal de entrada al túnel. Despreciando las pérdidas en el tramo de transición y considerando que en la transición se mantiene la misma penuiente que en el canal ($\Delta z = S_1 \times L$), se tieneque:

$$0.02 \times 6 + 0.675 + 2.035 = y_1 + \frac{v_1^2}{2g}$$

o sea que:

$$2.83 = y_1 + \frac{v_1^2}{2g}$$
 (a)

Se debe cumplir también la ecuación de continuidad:

$$A_1 V_1 = 12$$
 (b)

La solución del sistema de ecuaciones (a) y (b) espor tanteos. Por ejemplo, con $y_1/D=0.27$, $y_1=0.81$ m, de la tabla 2.6: $A_1/D^2=0.2107$, $A_1=1.8963$ m²; siendo la velocidady carga de velocidad respectivamente;

$$V_1 = \frac{12}{1.8963} = 6.328 \text{ m/seg}$$

$$\frac{v_1^2}{2q} = 2.043$$

y la energía específica vale:

$$E_1 = 0.81 + 2.043 = 2.853 m > 2.83$$

Después de una serie de tanteos adicionales se tienes: para $y_1/D=0.2715$, $y_1=0.8145$ m e interpolando en la tabla 2.6; $A_1/D^2=0.212125$, $A_1=1.9091$ m², siendo la velocidady la carga de velocidad:

$$V_1 = \frac{12}{1.9091} = 6.286 \text{ m/seg}$$

$$\frac{v_1^2}{2a} = 2.016 \text{ m}$$

La energía especítica vale:

$$E_1 = 0.8145 + 2.016 m = 2.83 m$$

que es el valor requerido. Por tanto, el tirante a la entrada - del túnel es y $_1$ = 0.8145 m que es menor que el crítico de 1.368m dentro del mismo, siendo factible que se produzca el salto hi-dráulico.

El conjugado menor de dicho salto debe ser $y_1=0.8145m$, Para determinar el mayor calculamos los parámetros siguientes:

$$\frac{Q}{\sqrt{g y_1^{51}}} = \frac{12}{\sqrt{9.8 \times (0.8145)}} = 6.402$$

$$\frac{y_1}{n} = \frac{0.8145}{3} = 0.2715$$

De la fig 4.6 resulta que: $y_2/y_1 = 2.62$ y por tanto el conjugado mayor vale:

$$y_2 = 2.62 \times 0.8145 = 2.134 \text{ m} < 3 \text{ m}$$

por lo cual el túnel no se ahoga.

Para que el salto se inicie en la sección del portal de entrada, se necesita que el tirante conjugado mayor calculado, sea el tirante normal dentro del túnel. Los elementos geométricos para dicho tirante se calculan de la tabla 2.6 para -- $y_2/D = 2.134/3 = 0.7113$. Mediante interpolaciones lineales resulta que: $A_2/D^2 = 0.64147$, $R_{h_2}/D = 0.300756$ y por tanto se obtiene que:

$$A_2 = 0.64147 \times 3^2 = 5.7732 \text{ m}^2$$

 $Rh_2 = 0.300756 \times 3 = 0.9023 \text{ m}$

$$V = \frac{12}{5.7732} = 2.0786 \text{ m/seg}$$

De la fórmula de Manning, la pendiente en el túnel-

debe ser:

$$s_2 = \left(\frac{V_2 \cdot n_2}{R_{h_2}^{2/3}}\right)^2 = \left(\frac{2.0786 \times 0.018}{(0.9023)^{2/3}}\right)^2 = 0.001606$$

Solución b.

Para $S_2=0.01$ en el túnel, será necesario determinar el tirante normal que se produciría. Para ello calculamos el siguiente parámetro:

$$\frac{Q n_2}{D^{8/3} S_2^{1/2}} = \frac{12 \times 0.018}{3^{8/3} \times \sqrt{0.01}} = 0.11538$$

De acuerdo con la ec (2.36), de la fig 2.7 (o de la tabla 2.6) resulta que:

y/D = 0.381, o sea que el tirante normal en el túnel vale:

$$y_n = 0.381 \times 3 = 1.143 \text{ m} < y_c = 1.368 \text{ m}$$

Esto es, para $S_2=0.01$ en el túnel, el flujo uniforme se produce con tirante normal menor que el crítico, o sea, a régimen su percrítico igual que en el canal. Por tanto, no se presenta elsalto hidráulico en ninguna sección.

Solución c. Para eliminar el salto hidráulico bastaría que la-pendiente dentro del túnel fuese la crítica. Una pendiente menor forzaría a un régimen subcrítico y a un salto hidráulico. Por tanto, la pendiente crítica dentro del túnel sería la mínima para evitar el salto. De este modo, se debe tener que:

$$\frac{y_n}{n} = \frac{y_c}{n} = \frac{1.368}{3} = 0.456$$

De la tabla 2.6 resulta que $A_c/D^2 = 0.39264$, $R_{h_c}/D = 0.24412$, y por tanto:

$$A_c = 0.39264 \times (3)^2 = 3.5338 \text{ m}^2$$

$$R_{h_c} = 0.24412 \times 3 = 0.7324 \text{ m}$$

Siendo la velocidad crítica:

$$V_c = \frac{12}{3.5338} = 3.396 \text{ m/seg}$$

y la pendiente crítica vale:

$$S_c = \begin{bmatrix} \frac{V_c \, n_2}{R_{h_c} \, 2/3} \end{bmatrix}^2 = \begin{bmatrix} \frac{3.396 \times 0.018}{0.7324 \, 2/3} \end{bmatrix}^2 = 0.00566$$

Solución d. De acuerdo con la solución a, la energía específica para el flujo uniforme en el canal vale:

$$En = 0.675 + 2.035 = 2.71 m$$

Si se desea el mismo tirante dentro del túnel ($y_1 = 0.675 \text{ m}$), - será necesario calcular la energía específica para dicho tirante. De este modo:

$$\frac{y_1}{n} = \frac{0.675}{3} = 0.225$$

Para este parámetro, de la tabla 2.6 resulta que: $A_2/D^2 = 0.16865$ y $R_{h_2}/D = 0.1481$ resultando así los siguientes-valores:

$$A_{1} = 0.16865 \times 3^{2} = 1.5179 \text{ m}^{2}$$

$$R_{1} = 0.1481 \times 3 = 0.4443 \text{ m}$$

$$V_{1} = \frac{12}{1.5179} = 7.906 \text{ m/seg}$$

$$\frac{V_{1}^{2}}{2g} = 3.189 \text{ m}$$

$$E_1 = 0.675 + 3.189 = 3.864 m$$

Si Δz representa el desnivel entre las secciones -inicial y final de la transición y además se desprecian las pér
didas en la misma, la ecuación de energía entre las dos secciones resultaría ser:

$$\Delta z + 2.71 = 3.864$$

Por tanto, se tiene que:

$$\Delta z = 1.154 \text{ m}$$

Esto es, para que se presente al mismo tirante ---- $y_n=0.675$ m en la sección de entrada al túnel, se necesita que dicha sección quede a 1.154 m por debajo de la sección en que - se inicia la transición. Esto se aclara en la fig 4.25.

Finalmente, para conservar el mismo tirante a lo --largo del túnel, será necesario calcular la pendiente en el mismo que garantice el flujo uniforme con dicho tirante normal. --Aplicando la fórmula de Manning, dicha pendiente vale

$$s_2 = \left(\frac{v_1}{R_{h_1}} \frac{n_{e_1}^2}{2/3}\right)^2 = \left(\frac{7.906 \times 0.018}{0.4443 \times 2/3}\right)^2 = 0.05973$$

4.5. Compuerta con descarga sumergida.

Considere la disposición del flujo en la descarga - sumergida de la compuerta deslizante rectangular mostrada en la fig. 4.26. El tirante y_2 corresponde al de la sección contraída del flujo y y_3 al producido por algún control desde aguas abajo. Si y_3 es mayor que el tirante conjugado de y_2 - esto es, el tirante necesario para formar un salto hidráulico con y_2 - entonces la descarga de la compuerta se ahoga tal como se muestra en la figura. Esto ocasiona que el chorro descargado por la com--puerta quede sumergido debajo de una masa de agua la cual, aunque con gran turbulencia, no tiene un movimiento claro en ningu na dirección.

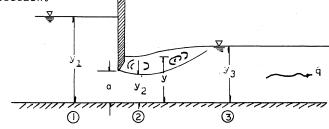


Fig 4.26 Descarga sumergida de una compuerta

Un análisis aproximado se puede hacer tratando el -caso de un "flujo dividido" en el cual, parte de la sección del flujo ocupado por el agua en movimiento y parte por agua "estan cada". Si bien existirá alguna pérdida de energía entre las secciones l y 2, una gran proporción de la misma ocurrirá al expanderse el flujo entre las secciones 2 y 3 y la cual, en principio, se desconoce. En la sección 2 la velocidad efectiva del -flujo será la correspondiente al tirante y2, si bien la carga de presión en la misma será igual al tirante y y no a y2.

La ec (4.2) de igualdad de momentum en las secciones 2 y 3 implica que

$$\frac{q^2}{g y_2} + \frac{y^2}{2} = \frac{q^2}{g y_3} + \frac{y_3^2}{2}$$
 (4.25)

donde se ha considerado el gasto unitario q = Q/b y que $z_{g} = y/2$

Dividiendo entre y_3^2 , al despejar resulta:

$$\left(\frac{y}{y_3}\right)^2 = 1 + \frac{2 \cdot q^2}{g \cdot y_3^3} \left(1 - \frac{y_3}{y_2}\right)$$

siendo $\mathbf{F}_{\mathbf{r}_3}^2 = \mathbf{q}^2/\mathbf{g} \ \mathbf{y}_3^3$ el número de Froude en la sección 3, se obtiene la relación de sumergencia:

$$\frac{y}{y_3} = \sqrt{1 + 2 F_{r_3}^2 (1 - \frac{y_3}{y_2})}$$
 (4.26)

La relación de tirante y/y3 variará entre O y l. -- Sin embargo, si se observa que el régimen aguas abajo (sección-3) debe ser subcrítico, se tendrá que $0 < F_{\rm r}^2 \le 1$; además se ten-

drá que $y/y_2 > 1$ y 2 $F_{\mathbf{r}_3}^2$ (1 - $\frac{y_3}{y_2}$) < 0 por lo cual, de acuerdo -

con la magnitud de F_{13}^{2} , podría no existir solución para el tirrante y" dentro de los intervalos señalados. En efecto, "y "podrádisminuir cuando más al valor del tirante y2 lo cual transforma ría la ec (4.25) a la del salto hidráulico "claro" (sin ahoga--miento) y forzaría a la condición límite de solución, independientemente del valor F_{13}^{2} dentro del intervalo considerado.

Es importante señalar que al aceptar la misma energía en las secciones 1 y 2, esto es que:

$$y_1 + \frac{q^2}{2g_1y_1^2} = y + \frac{q^2}{2g_1y_2^2}$$
 (4.27)

(aceptando que $y_2 = C_c$ a), la solución simultánea de las ecs -- (4.25) y (4.27) conduce al resultado teórico del coeficiente de descarga C_d utilizado en la ec (6.26) del Vol. I. Si dicho resultado (considerando que $C_c = 0.6$) se compara con el experimental presentado en la fig 6.76 del Vol I para $y_3/a = 5$, se obtiene que el teórico es aproximadamente 3 a 5 por ciento mayor que el experimental, lo cual confirma la validez de la teoría aquí pre sentada.

Según Woycicki, la longitud del salto en este casose puede calcular con la siguiente fórmula experimental:

$$\frac{L}{y_3 - y_2} = 6 - 0.05 \frac{y_3}{y_2} \tag{4.28}$$

<u>Problema 4.5</u>. a) En el problema 4.2, determinar la reducción — que experimentaría el gasto descargado por la compuerta si semantiene el mismo tirante-aguas arriba- de 1.90 m, la misma — abertura y la pendiente del canal se reduce a $S_0=0.0009$. b) Si la compuerta es alima ada por un canal donde se mantiene —

el gasto original de 5.322 m³/seg, calcular a cuanto ascenderá el tirante aguas arriba de la compuerta al producirse el —ahogamiento, si se mantiene la misma abertura y $S_0=0.0009$.

Solución a. Es obvio que al reducir la pendiente del canaly--el tirante normal en el mismo aumentará forzando seguramen te a una descarga ahogada de la compuerta que,a su vez,redu--cirá el gasto, con ello el tirante normal y a su vez el gra--ao de ahogamiento, etc. La solución tenaría que ser entoncespor tanteos. El comportamiento del flujo será como se muestra en la fig 4.26 y usaremos la simbología empleada en esta figura; esto es, $y_1 = 1.90$ m y a = 0.51 m y $S_0 = 0.000$ 9.

Los tanteos consistirán en proponer un gasto, menor que el de descarga libre, con el cual se hará el cálculocompleto para ser después verificado. Aquí únicamente se explica el tanteo definitivo.

Se supone $\mathbb{Q}=4.108~\text{m}^3/\text{seg.}$ Se obtiene así el --siguiente parámetro:

$$\frac{Qn}{b^{8/3}s^{1/2}} = \frac{4.108 \times 0.025}{3^{8/3} \sqrt{0.0009}} = 0.183$$

De la fig 2.7 resulta que $y_3/b = 0.47$ y el tirante normal sería:

$$y_3 = 0.47 \times 3 = 1.41 \text{ m}$$

Al afinar el resultado de la gráfica de la fig 2.7, por un -- procedimiento de tantes, resulta que el valor correcto de -- y_3 es 1.411 m, como fácilmente puede verificarse calculando--- el qasto.

Ln el problema 4.2 se calculó que $y_2 = 0.3188$ m, por otra parte se tiene que:

$$\operatorname{Fr_3}^2 = \frac{q^2}{g y_3^3} = \frac{(4.108/3)^2}{9.8 \times (1.411)^3} = 0.06811$$

Sustituyendo en la ec (4.26), resulta que:

$$y = 1.411 \sqrt{1 + 2 \times 0.06811 (1-1.411/0.3188)} = 1.030 m$$

que es mayor que \mathbf{y}_2 y menor que \mathbf{y}_3 , por tanto la descarga es ahogada.

Para determinar el coeficiente de descarga de la -compuerta será necesario calcular los siguientes parámetros:

$$\frac{y_1}{a} = \frac{1.90}{0.51} = 3.725$$

$$\frac{y_3}{a} = \frac{1.411}{0.51} = 2.767$$

Con estos valores, de la fig 6.16 del Vol. I resulta que $C_{\bf d}$ = 0.44 siendo el gasto

$$Q = 0.44 \times 3 \times 0.51 \sqrt{2 \times 9.8 \times 1.90} = 4.108 \text{ m}^3/\text{seg}$$

que coincide con el valor original supuesto. De la ec (4.28), - la longitud del salto vale:

$$L = (6 - 0.05 \frac{1.411}{0.3188}) (1.411-0.3188) = 6.311 m$$

Solución b. Al mantenerse el gasto $Q=5.322~\text{m}^3/\text{seg}$, será --necesario calcular el nuevo tirante normal para $S_0=0.0009$. -Para ello, determinamos el siguiente parámetro:

$$\frac{\ln \frac{\ln n}{b^{8/3} s^{\frac{1}{2}}} \qquad \frac{5.322 \times 0.025}{3^{8/3} \sqrt{0.0009}} = 0.2369$$

De la fig 2.7 resulta que $y_n/b = 0.568$ y el tirante normal vale:

$$y_p = 0.572 \times 3 = 1.716 \text{ m}$$

Al afinar el resultadose obtieneque el valor correcto de y_n es 1.715 m. El cuadrado del número de Froude vale:

$$F_{r_3}^2 = \frac{q^2}{g y_3^2} = \frac{(5.322/3)^2}{9.8 (1.715)^3} = 0.06366$$

Substituyendo en la ec (4.26), resulta que:

$$y = 1.715 \sqrt{1+2\times0.06366(1-1.715/0.3188)} = 1.141 \text{ m}$$

que es mayor que y_2 y menor que y_3 , por tanto la descarga-es ahogada.

El cálculo de y será por tanteos y aquí solo se presenta el definitivo. El parámetro y y/a valæ:

$$\frac{y_3}{a} = \frac{1.715}{0.51} = 3.363$$

Se supone $y_1=2.8$ m y por tanto: $y_1/a=5.49$ y - de la fig 6.16 del Vol. I se obtiene: $C_d=0.47$. De la ec.(6.25) del mismo volúmen.

$$y_1 = \left(\frac{Q}{C_d \times a \times b \sqrt{2g}}\right)^2 = \left(\frac{5.322}{0.47 \times 0.51 \times 3 \times \sqrt{2} \times 9.8}\right)^2 =$$
= 2.795 m

que es elvalor supuesto. Por tanto, el tirante aguas arriba de la compuerta ascenderá de 1.90 a 2.80 m.

<u>Problema 4.6</u>. La obra de desvío de una presa consiste de dos — túneles circulares de 3 m de diámetro y 300 m de longitud, revestidos de concreto (rugosidad absoluta $\mathcal{E}=2$ mm), que descargan al río aguas abajo de la presa, a través de un tajo de sección trapecial, talud 0.5:1 y 9 m en la base. El nivel del agua en el río alcanza la E1. 13.00 m constante. Si el nivel del — agua arriba de la ataguía rebasa la E1. 28.00 m, funcionará elvertedor de excedencias de L = 25 m de longitud de cresta, cuya ley de descargas está dada por la ecuación: $Q_{\nu}=2$ L $H^{3/2}$. Determinar las condiciones de funcionamiento cuando el gasto total — en los túneles es de 160 m 3 /seg (fig 4.27).

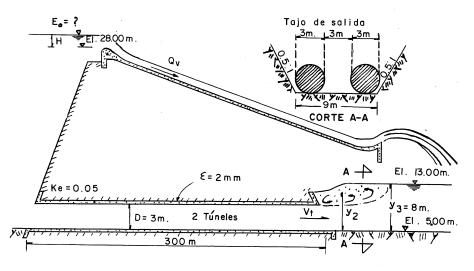


Fig 4.27. Obra de desvío del problema 4.6

<u>Solución</u>. El tirante $y_3=8$ m en el tajo de salida de los túneles es mayor que el díametro de los mismos, por lo cual la descarga será seguramente sumergida y será necesario conocer el tirante "y" de sumergencia. La solución propuesta en el subcapítulo anterior, puede generalizarse para este problema si se acepta que en la seccion de salida de los túneles la velocidad efectiva del flujo será V_t (en los túneles), si bien la car ga de presión corresponderá al tirante "y" de sumergencia.

El área de un túnel será:

$$A_1 = \frac{\pi}{4} (3)^2 = 7.0686 \text{ m}^2$$

y el de los dos túneles:

$$A_{\perp} = 2 \times 7.0686 = 14.1372 \text{ m}^2$$

La velocidad y carga de velocidad en el túnel valen:

$$V_t = \frac{160}{14.1372} = 11.318 \text{ m/seg}$$

$$\frac{v_t^2}{2g} = 6.5352 \text{ m}$$

La presencia de un salto hidráulico ahogado en eltajo de descarga obligará a la igualdad de momentum entre la sección de salida y la sección 3. Esto es, según la ec (4.2)—se tiene que:

$$\frac{g^2}{g A_t} + Z_{G_2} A_2 = \frac{g^2}{g A_3} + Z_{G_3} A_3$$

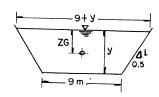


Fig.4.28 Sección del tajo de salida.

De acuerdo con la fig 4.28, el — área de la sección 3 vale:

$$A_3 = (9 + 0.5 \times 8) 8 = 104 \text{ m}^2$$

y la protundidad del centro de gravedad es:

$$Z_{G_3} = y_3 \left(1 - \frac{1}{3} - \frac{2(9 + y_3) + 9}{9 + y_3 + 9}\right)$$

y para $y_3 = 8$ m vale $Z_6 = 3.5897$ m

Por lo tanto, el momentum en la sección 3 resulta ser:

$$M_3 = \frac{g^2}{g A_3} + 2G_3A_3 = \frac{160^2}{9.8 \times 104} + 3.5897 \times 104 = 398.4511$$

De manera análoga, el momentum en la sección 2 de salida vale:

$$M_{1} = \frac{Q^{2}}{g A_{t}} + Z_{G_{2}}A_{2} = \frac{160^{2}}{9.8 \times 14.1372} +$$

$$+ y_{2} \left(1 - \frac{1}{3} - \frac{2(9 + y_{2}) + 9}{9 + y_{2} + 9}\right) (9 + 0.5 y_{2}) y_{2}$$

Simplificando resulta:

$$M_1 = 184.7781 + (1 - \frac{27 + 2 y_2}{54 + 3 y_2}) (9 + 0.5 y_2) y_2^2$$

Por tanteos se puede calcular el tirante "y" que produzca un momentum $\rm M_1 = M_3 = 398.4511.$ µicho valor es $\rm --y_2 = 6.213$ m.

En efecto, se obtiene:

 $M_1 = 184.7781 + (1 - \frac{27+2\times6.213}{54+3\times6.213})(9+05\times6.213)6.213^2 = 398.456$ que es practicamente el valor de M_3 .

Por tanto,
$$y_2 = 6.213 \text{ m}$$
.

Para calcular el nivel en el embalse, será necesario aplicar la ecuación de energía entre una sección antes dela entrada al túnel y la de salida, utilizando como nivel derecerencia la elevación cero. Debe recordarse que en la sección de salida la energía disponible es la suma de la carga de presión en el fondo (y2, y la carga de velocidad en los túneles – $\frac{2}{\sqrt{t}}$. El coeficiente de pérdida por entrada es $K_e=0.05$ y paragg la pérdida por fricción se aplicará la fórmula de Jarcyweisbach.

El número de Heynolds en el túnel, para \forall = 0.011cm²/seg, vale:

$$R_e = \frac{V_t^D}{V} = \frac{1131.8 \times 300}{0.011} = 3.087 \times 10^7$$

esto es, el flujo es turpulento. La rugosidad relativa es:

$$\frac{\varepsilon}{D} = \frac{0.002}{3} = 0.00067$$

Del diagrama universal de Moody (Vol I) resulta: f = 0.018 y de la ecuación de energía, se tiene que: $_2$

$$E_0 = 5 + y_2 + \frac{v_t^2}{2g} + (K_e + f \frac{L}{D}) \frac{v_t^2}{2g}$$

Substituyendo resulta:

$$E_0 = 5 + 6.213 + 6.5352 + (0.05 + 0.018 \frac{300}{3}) 6.5352$$

 $E_0 = 29.8383 \text{ m}$

que es la elevación en el embalse y que rebasa: la elevación de la cresta del vertedor. La carga sobre el mismo será entonce:

$$H = 29.8383 - 28.00 = 1.8383 m$$

y finalmente el gasto que descarga será:

$$Q_{v} = 2 \times 25 \times 1.8383^{3/2} = 124.622 \text{ m}^{3}/\text{seg}$$

El gasto total desviado por las obras será

$$Q_{+} = 160 + 124.622 = 284.622 \text{ m}^{3}/\text{seg}$$

4.6 Salto en cunales rectangulares con pendiente

En el análisis del salto nidráulico en canales con pendiente será necesario considerar el efecto de la componente del peso del prisma del volúmen de control de la fig 4.4, el—cual no fue considerado en el subcapítulo 4.2 por considerar —que el canal es horizontal.

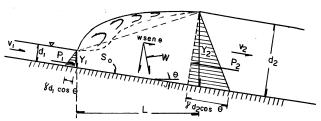


Fig 4.29. palto hidráulico en canales con pendiente

La ecuación de cantidad de movimiento (4.1) aplicada al volúmen de control de la \cap ig 4.29 de sección rectangular-resulta ser:

$$P_1 + W \sin \theta - P_2 = \frac{y_q^2}{g} \left(\frac{1}{d_2} - \frac{1}{d_1} \right)$$
 (4.28)

Las fuerzas de superficie P_1 y P_2 de la ec (4.28)

valen:

$$P_1 = \frac{1}{2} d_1^2 \cos \theta$$

$$P_2 = \frac{1}{2} d_2^2 \cos \theta$$

Para calcular la fuerza de cuerpo (peso) se puedeconsiderar que el perfil de la superficie libre es plana y que este error se corrija a través de un coeficiente K, como sigue:

$$W = \frac{1}{2} \ \% \ K \ L \ (d_1 + d_2)$$

donde L es la distancia que separa las secciones l y 2 (longitud del salto, De esta manera, la ec (4.28) resulta:

$$\frac{1}{2} \cos \theta \ d_1^2 + \frac{1}{2} K L \sin \theta \ (d_1 + d_2) - \frac{1}{2} \% \cos \theta \ d_2^2 - \frac{d_1^2}{g} \left(\frac{d_1 - d_2}{d_1 d_2} \right) = 0$$

Haciendo operaciones algebraicas con la ecuación anterior, re-sulta:

$$\left(\frac{d_2}{d_1}\right)^3 - \left(2 G^2 + 1\right) \frac{d_2}{d_1} + 2 G^2 = 0$$
 (4.29)

donde

$$G = \frac{F_{r_1}^2}{\cos \theta - \frac{K \ L \ sen \ \theta}{d_2 - d_1}}$$
 (4.30)

siendo $F_{r_1}^2 = q^2/gd_1^3$ el número de rroude en la sección l. La solución de la ec. (4.29) es:

$$\frac{d_2}{d_1} = \frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 8G^2} - 1 \right)$$
 (4.31)

debido a que $d_1 = y_1 \cos \theta$ y $d_2 = y_2 \cos \theta$

La ec (4.31) es análoga a la ec (4.8). Debido a que $G=f(F_{\mathbf{r}_1},\theta)$, esta ecuación indica que d_2/d_1 y y_2/y_1 son funciones de $F_{\mathbf{r}_1}$ y θ (o bien S_0). La fig 4.30 muestra los --resultados experimentales de Hickox, kindsvater y del u.S. Bureau of Reclamatión. De manera análoga, la longitud relativa

del salto L/y_2 se puede presentar como una función de F_{r_1} y S_0 , como se muestra en la fig 4.31, basado en los resultados experimentales del u.S. Bureau of Reclamation.

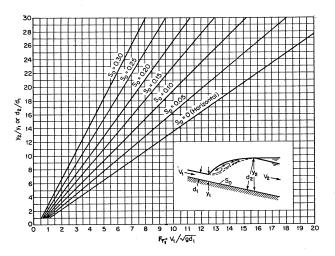


Fig.4.30 relaciones experimentales entre F_{r1} y y /y 6 de d 2/d para el salto en cannales con pendientes (Según Ven le Chow) ref.2 .

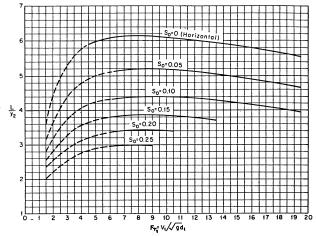


Fig 4.3I Longitud del salto en canales con pendiente según el U.S.Bureau of Reclamation (ref 20)

CAPITULO 5. FLUJO VARIADO

5.1 Ecuación dinámica

El flujo gradualmente variado que se discutirá en este capítulo se refiere a un flujo permanente cuyo tirante - varía gradualmente en la dirección del canal, de tal manera - que las líneas de corriente son rectas y prácticamente parale las y, por lo mismo, la distribución hidrostática de presiones prevalece en cada sección. Debido a que el flujo gradualmente variado involucra cambios pequeños de tirante, dicho -- flujo se refiere a longitudes grandes del canal.

Para el desarrollo de la teoría se establecen, -- además, las siguientes hipótesis:

- l. La pendiente de plantilla en el canal es uni-forme y pequeña de tal manera que se confunde el tirante de la sección normal con el vertical (cos θ = 1 en la ecuación de energía) y, además, no ocurre arrastre de aire al interior del flujo.
- 2. La curva de distribución de velocidades tiene la misma forma en cualquier sección del canal, por lo tanto,— el coeficiente de energía \propto es constante.
- 3. La pérdida de energía mas importante es la de fricción. Para el cálculo de la pendiente de la línea de energía en una sección se utilizan las mismas fórmulas que en flu jo uniforme, utilizando la velocidad media, el radio hidráulico y el coeficiente de rugosidad de la propia sección. Esta -

suposición nunca ha sido verificado ni teórica, ni experimentalmente, sin embargo, los errores que induce son pequeños si se comparan con los que se incurre al seleccionar el coeficiente de rugosidad en flujo uniforme. Además, la suposición es — más precisa cuando la velocidad aumenta que cuando disminuyedebido a que en el primer caso, la pérdida de energía es causada casi enteramente por fricción, y en el segundo, pueden — existir además pérdidas por turbulencia en gran escala

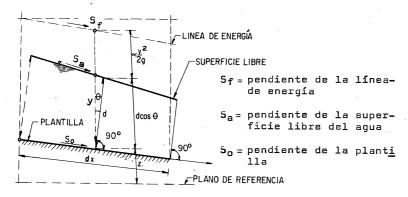


Fig. '5.1 Derivación de la ecuación dinámica del - flujo gradualmente variado

La ecuación diferencial de la energía (1.8) se --- aplica, desde luego al flujo gradualmente variado. Si se considera que p/ μ = d cos 0, s = x (fig 5.1, y α = constante, resulta:

$$\frac{dz}{dx} + \frac{d}{dx} \left(d \cos \theta + \alpha \frac{v^2}{2g} \right) + \frac{dh_r}{dx} = 0$$
 (5.1a)

o bien, con E = d cos 9 + \propto $v^2/2g = y$ cos 2 9 + \propto $v^2/2g$ (energia específica, ec 3.1), resulta que:

$$\frac{dz}{dx} + \frac{dE}{dx} + \frac{dh_{r}}{dx} = 0$$
 (5.1b)

La pendiente de la plantilla S_0 se ha definido c_0 mo el seno del ángulo θ de inclinación respecto de la horizon tal y se supone positiva si la inclinación es descendente hacia aguas abajo (z decreciente cuando x crece) y negativa encaso contrario. Esto es, que:

$$S_0 = \sin \theta = -\frac{dz}{dx} \tag{5.2}$$

También, la pendiente de la línea de energía es:

$$S_{f} = \frac{dh_{r}}{dx} \tag{5.3}$$

Siendo, además, dE/dx = (dE/dy)(dy/dx), de la ec. (3.3b) resulta que:

$$\frac{dE}{dx} = (1 - F_r^2) \frac{dy}{dx}$$
 (5.4)

donde

$$F_r = V / \sqrt{g Y/\infty} = Q/A \sqrt{g Y/\infty}$$

Substituyendo las ecs. (5.2), (5.3) y (5.4) en (5.1b), se obtiene que:

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - F_r^2} = S_0 \frac{1 - S_f/S_0}{1 - F_r^2}$$
 (5.5)

que es la ecuación dinámica del flujo gradualmente variado. — dy/dx representa la pendiente S_a de la superficie libre del — agua referida al eje x, coincidente con la plantilla del ca—nal.

En el caso de canales muy anchos, y $\approx R_h$ y usandola fórmula de Chezy para valuar $S_{\rm f}$ resulta que:

$$S_{f} = \frac{Q^{2}}{A^{2}C^{2}V} = \frac{Q^{2}}{b^{2}C^{2}V^{3}}$$
 (5.6)

y para flujo uniforme (yn, tirante normal) sería:

$$S_0 = \frac{Q^2}{b^2 C^2 y_0 3} \tag{5.7}$$

Además.

$$F_{\mathbf{r}}^{2} = \frac{\propto Q^{2}B}{q A^{3}} = \frac{A_{c}^{3}B}{A^{3}B_{c}} = \frac{y_{c}^{3}b^{4}}{y_{3}^{3}b^{4}} = \frac{y_{c}^{3}}{y_{3}^{3}}$$
 (5.8)

Sustituyendo las ecs (5.6), (5.7) y (5.8)en la (5.5), resulta:

$$\frac{dy}{dx} = S_0 \frac{1 - (y_0/y)^3}{1 - (y_0/y)^3}$$
 (5.9)

que es la conocida ecuación de Bresse para el flujo gradualme<u>n</u> te variado en canales muy anchos.

5.2 <u>Características y clasificación de los perfiles</u> de flujo

La primera clasificación de los perfiles de flujovariado fue hecha por Bakhme teff. y esta basada en la pendien te del canal y la "zona" en que se aloja el perfil.

Para un valor dado de Q y sección transversal de forma cualquiera, S f y $F_{\rm r}^{\ 2}$ no son funciones sencillas de y, detal modo que la ec (5.5), en general, no tiene una solución explícita inmediata. Sin embargo, no se desea aquí obtener dicha solución sino el aspecto semicuantitativo de la variación de y con x en diferentes circunstancias; esto es, se desea determinar la forma que adopta el perfil de la superficie libre. Para este fin es necesario considerar los signos del numerador y de nominador de la ec (5.5) (y de estos el de dy/dx) y, además, — cómo dependen estos signos de la magnitud de y.

La forma que adopta el perfil está directamente — asociado con la pendiente de la plantilla S_0 y con los valores de S_f y $F_r{}^2$; para simplificar la discusión, se acepta que elcanal sea prismático.

Por lo que respecta a la pendiente de la plantilla, S_0 será positiva si el fondo desciende en la dirección del flujo, negativa si asciende y cero si es horizontal. En el caso de

pendiente positiva, sobre ella se puede establecer un flujo - uniforme de tirante \mathbf{y}_{n} , por lo cual dicha pendiente (positiva) podría también ser:

"suave si $y_n > y_c$, perfiles tipo "M"

"crítica" si $y_n = y_c$, perfiles tipo "C"

"pronunciada" si $y_n < y_c$, perfiles tipo "S"

La clasificación de la pendiente en uno de estostipos dependerá de la rugosidad, de la magnitud misma de la pendiente y en menor grado del gasto.

En el caso de pendiente cero o negativa, no existe posibilidad de flujo uniforme. En efecto, para $S_0=0$ el tirante normal es $y_n=\infty$ y para $S_0<0$ un valor positivo finito de y_n es físicamente imposible.

De la fórmula de Manning, la pendiente de fricción vale

$$S_f = \left(\frac{Vn}{R_h^{2/3}}\right)^2 = \left(\frac{Qn}{AR_h^{2/3}}\right)^2$$
 (5.10)

Por otra parte, de la ec. (3.4a) se observa que para el régimen crítico (y = y_c) el cuadrado del número de --Froude F_r^2 adopta el valor 1; esto es, dicho término será mayor que 1 si los tirantes del perfil de flujo son menores que el crítico y menor que 1 en caso contrario.

Para un gasto dado y para la mayoría de las secciones usuales, S_f y F_r^2 son decrecientes en forma continua amedida que el tirante crece. Esto es particularmente cierto en secciones anchas donde, al crecer el tirante, R_h y B prácticamente no cambian en comparación con los cambios que experimenta A.

Por definición de flujo uniforme: $S_f = S_o$ cuando- $y = y_n$, por lo cual se concluye que

$$S_f \gtrsim S_0$$
 según que $y \not \leq y_n$
 $F_r^2 \gtrsim 1$ según que $y \not \leq y_c$

		PERFILES EN LA ZONA 1 y > yn ; So > Sf y > yc ; Fr < 1	PERFILES EN LA ZONA 2 $y_n \ge y \ge y_c; S_0 \le S_f; F_1^2 \le 1$ $y_c \ge y \ge y_n; S_0 \ge S_f; F_1^2 \ge 1$	PERFILES EN LA ZONA 3 y < yn ; Se Sr y < yc; Fr > I
So > 0	SUBCRITICA: Yn > Yc	$\frac{dy}{dx} = \frac{+}{+} = +$ $\frac{CALCULO}{MI}$ $y_n y_c y$	$\frac{dy}{dx} = \frac{-}{+} = -$ CALCULO $y_n y_c y$	dy = -= = +
PENDIENTE POSITIVA	CRITICA: yn " yc	$\frac{dy}{dx} = \frac{+}{+} = +$ $CALCULO$ $CI \nabla = -$ $y_n = y_c y$	$\frac{dy}{dx} = 0$ $C2$ $y_n = y_c$ y	$\frac{dy}{dx} = \frac{-}{-} = +$ $\frac{CALCULO}{y_{1}}$
	SUPERCRITICA: Yn < Yc	$\frac{dy}{dx} = \frac{+}{+} = + CALCULO$ SI y_{A} y_{C}	dy = + = CALCULO	$\frac{dy}{dx} = \frac{-}{-} = +$ CALCULO
PENDIENTE HORIZONTAL	y _n > y _c	dy NO EXISTE NINGUNA Yn Ye	$\frac{dy}{dx} = \frac{-}{+} = - \frac{-}{\text{CALCULO}}$ $H2$ y_{m} y_{e}	$\frac{dy}{dx} = \frac{-}{-} = +$ $CALCULO$ y_n y_e y_e y_y y_z y_z y_z y_z y_z y_z
PENDIENTE NEGATIVA	PENDIENTE NEGATIVA S S NO EXISTE S NO EXISTE A NO EXISTE A NO EXISTE		$\frac{dy}{dx} = \frac{-}{+} = - CA \underline{CULO}$ $A2$ y	$\frac{dy}{dx} = \frac{-}{-} = +$ $CALCULO$ y_{e}

Fig.5.2 Clasificación de los perfiles en flujo gradualmente variado.

Con la ayuda de estas desigualdades se puede dete $\underline{\mathbf{r}}$ minar rápidamente cómo se ve afectado el comportamiento de --- dy/dx por las magnitudes de, y, y $_{\mathrm{n}}$ y y $_{\mathrm{c}}$.

Cualquiera que sea la pendiente, para un gasto dado y sección del canal, las líneas (referidas a la plantilla),que indicarían la altura del tirante normal y del crítico, div<u>i</u> den el espacio en que podría desarrollarse el perfil del flujo en tres zonas que se llamarán:

Zona l. El espacio arriba de la línea superior

Zona 2. El espacio entre las dos líneas

Zona 3. El espacio abajo de la linea inferior. dentro de las cuales queda alojado cualquier perfil de tirante y.

Se recuerda también que si:

 $\frac{dy}{dx} > 0$, el perfil de la superficie libre diverge de la plantilla.

 $\frac{dy}{dx} = 0$, el perfil de la superficie libre es paralelo a la plantilla.

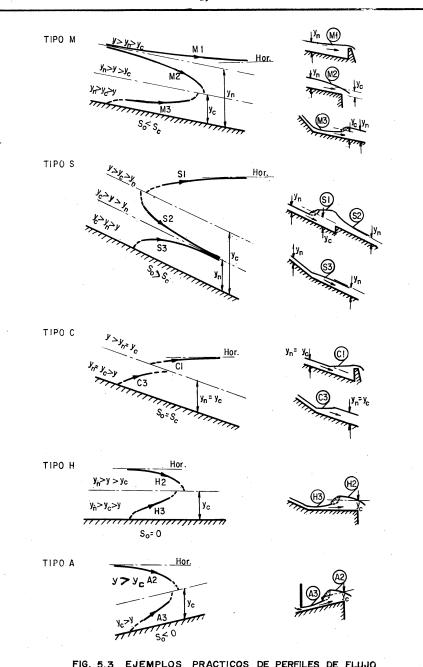
 $\frac{dy}{dx}$ < 0, el perfil de la superficie libre converge con la plantilla.

De acuerdo con estas consideraciones, existen diferentes formas para el perfil de la superficie libre en un flujo gradualmente variado (12 en total) y que se muestran en lafig 5.2. La forma del perfil depende de las condiciones particulares en el canal ; el incremento o disminución del tirante depende del signo que resulte de dichas condiciones al imponer las en la ec (5.4).

En cada zona existe un perfil distinto que es vál \underline{i} do dentro de los límites de esa zona. La forma del perfil al acercarse a las fronteras de la zona se puede estudiar como s \underline{i} gue

l. Cuando $y \rightarrow \infty$, F_r^2 y $S_f \rightarrow 0$ y, de la ec. (5.5) - $dy/dx \rightarrow S_0$. Esto significa que la superficie del agua es asintótica a la horizontal (curvas H2, A2). Cuando $y \rightarrow y_0$ ($S_0 = S_f$) $dy/dx \rightarrow 0$ y el perfil del flujo es paralelo a la plantilla del canal, esto es, tiende al flujo uniforme (curvas M1, M2, C2, - C3, S2, S3).

2. Cuando $y \rightarrow y_C$, $dy/dx \rightarrow \omega$; esto es, el perfil del flujo se vuelve vertical en la proximidad del tirante crítico. Esto significa que si el perfil se desarrolla en régimen super crítico ocurre una discontinuidad, presentándose un salto hi--- dráulico antes de que y alcanze el valor y_C (curvas M3, H3, -- A3), por el contrario si el perfil se desarrolla en régimen -- subcrítico, dicho perfil logra una gran curvatura al aproximar se y al valor y_C para volverse vertical en el punto en que $y = y_C$ (curvas M2, H2, A2). En ambos casos, se presenta un flujo - rápidamente variado (curvilíneo) que no puede tratarse con lateoría aquí desarrollada.


3. Cuando y \rightarrow 0, tanto S_f como $F_r^2 \rightarrow \omega$, de tal manera que dy/dx tiende a un limite positivo finito, cuya magnitud depende de la sección particular que se trate, Este resultado es de poco interés práctico debido a que no puede existir un tirante cero.

En la fig 5.3 se presentan algunos ejemplos prácticos de los perfiles indicados en la fig 5.2 y a continuación algunos comentarios acerca de dichos perfiles:

Tipo M. El perfil Ml es muy común. Las estructuras de control, tales como vertedores y compuertas, y otros accidentes naturales, como estrechamientos y curvas, pueden producir un efectode remanso en un canal o río, extendiéndose varios kilómetroshacia aguas arriba, tomándose como límite o longitud de dichoremanso aquella sección en que el tirante difiere en uno por ciento respecto del normal. El perfil M2 ocurre cuando el tirante se reduce, por ejemplo, en un estrechamiento de la sección
o en la proximidad de una caída. El perfil M3 se puede encontrar aguas abajo de un cambio de pendiente de supercrítica a subcrítica, o después de la descarga de una compuerta. Este perfil está regido por las condiciones aguas abajo y termina normalmente en un salto hidráulico. Los perfiles M2 y M3 son muy cortos en comparación con el M1.

Tipo 5. El perfil S1 es producido por una estructura de control como una presa o compuerta situada en un canal de gran pendiente. Principia después de un salto hidráulico y termina en la - obstrucción. El perfil S2 es generalmente muy corto y se en--cuentra, comúnmente, a la entrada de un canal de gran pendiente-o en un cambio de pendiente suave a pronunciada. El perfil S3 - se puede producir aguas abajo de una compuerta situada sobre - un canal de gran pendiente o aguas abajo de la intersección de un cambio de gran pendiente a otra de menos pendiente.

Tipo C. Como los tirantes normal y crítico coinciden, hay sólo dos perfiles. Estos son aproximadamente horizontales pero, por supuesto, la inestabilidad propia del estado crítico se manifiesta en la forma de una ondulación superficial apreciable.

Tipo H. Este perfil es el límite inferior de una pendiente sua ve. El tirante normal es infinito, por lo cual hay solo dos ---perfiles.

Tipo A. La pendiente \mathbf{S}_0 negativa es rara. Cuando el tirante es infinito, dy/dx = $1/S_0$, lo que significa un perfil asintótico-a la horizontal. Los perfiles son extremadamente cortos.

En cualquier caso de flujo variado, es aplicable - uno solo de estos tipos de perfil y resulta conveniente fami-- liarizarse con su clasificación. La habilidad para clasificar-correctamente el flujo en un problema particular es un prerequisito esencial en el cálculo del perfil de flujo.

5.3. Sección de control

La sección de un canal en la que sea posible establecer una relación definida entre el nivel de la superficie libre del agua y el gasto correspondiente, se conoce como "sec ción de control". En general, dicha sección "controla"

el flujo, tanto en dirección aguas arriba como en dirección aguas abajo. Por sus propiedades, una sección de control es -- siempre un sitio adecuado para una estación de aforos.

Volvemos a insistir en la discusión del inciso --- 3.3.5.

Una sección crítica es una sección de control debido a que de la ec (3.4b) se puede establecer una relación definida entre tirante y gasto, independientemente de la rugosidad del canal y otras circunstancias no controladas. Por otra parte, de la ec (3.4a) se obtiene que para la sección crítica lavelocidad del agua vale:

$$V_c = \sqrt{g Y_c}$$

Si dicha velocidad se compara con el valor de la celeridad delas ondas de pequeña amplitud (ec d del problema 1.2), se observa que en el estado crítico la velocidad crítica es igual a la celeridad de dichas ondas. Si el régimen es subcrítico, lavelocidad del flujo es menor que la crítica y que la celeridad de dichas ondas, por tanto, en este tipo de régimen, es posible la transmisión de disturbios hacia aguas arriba. Lo contra rio acontece con el régimen supercrítico en el que los disturbios sólo se transmiten hacia aguas abajo.

En la práctica, esto significa que un mecanismo de control como una compuerta (fig 5.4) puede hacer sentir su ---

influencia hacia aguas arriba del flujo; esto es, el régimen - subcrítico está sujeto a un control desde aguas abajo. Por el-contrario, el régimen supercrítico no puede quedar influencia-do por lo que ocurra aguas abajo, y sólo puede quedar controla do desde aguas arriba.

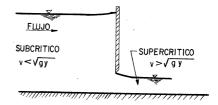


Fig. 5.4. Una compuerta deslizante que genera régimen subcrítico y supercrítico

Para el cálculo de un perfil en flujo variado es - necesario establecer la sección de control que proporcione las condiciones iniciales.

Se procede hacia aguas arriba de la sección de control o hacia aguas abajo, según que el régimen en que se desarrolla el perfil sea subcrítico o supercrítico y dicho régimen depende a su vez de la pendiente de plantilla. Estas direcciones de cálculo se indican en la fig 5.2 para todos los tipos de perfil.

Algunos ejemplos de secciones de control lo son — las presas, vertedores y compuertas, debido a que el gasto está relacionado con la carga a través de una curva llamada de — "gasto — tirante". Como el tirante crítico depende únicamentedel gasto y de la forma de la sección, cualquier intersecciónbien definida de la línea del perfil de flujo y la correspondiente al tirante crítico constituyen una sección de controlo-En efecto, considérese el caso de que $S_0 = S_f$. De la ec. (5.5) esto significa que dy/dx = 0, o bien que $F_r^2 = 1$.

La primera alternativa implica evidentemente un flujo uniforme. Conviene averiguar si la segunda alternativa tiene algún significado físico real. Lonsidérese un canal compues to de dos tramos, el de aguas arriba de pendiente suave y el de aguas abajo de pendiente pronunciada, siendo la sección Odonde se produce el cambio (fig 5.5). El flujo cambiará gradualmente de subcrítico en el tramo de aguas arriba a supercrí

tico en algún punto intermedio.

En la región aguas arriba de O se formará un perfil M2 ($S_f > S_0$) y en la de aguas abajo un perfil S2 ($S_f < S_0$). Aguas arriba y aguas abajo de O se formará un perfil corto de transición entre los dos perfiles, dentro del cual habrá una secciónen la que $S_f = S_0$ y, además, puesto que en esta zona no es claro que dy/dx = O, la única posibilidad es que $F_r^2 = 1$ y que ocurra el estado crítico en la vecindad de la sección O. Esto demuestra la discusión del inciso 4.1.

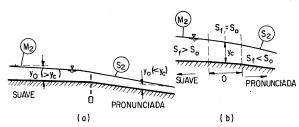


Fig 5.5. Ocurrencia de flujo crítico en un cambio — de pendiente

Un análisis semejante vale, en el caso de que aguasabajo de O exista una caída libre (problema 3.8), si bien, en este caso, en la sección en que se inicia la caída, la distribu ción de presiones es hidrostática, haciendo que se mueva la sec ción crítica hacia aguas arriba.

En ambos casos, el análisis muestra que en la proximidad de la sección O existe una sección crítica, esto es, "uncontrol". Sin embargo, este control es efectivo sólo en la transición de régimen subcrítico a supercrítico debido a que en elproceso inverso ocurre antes el salto hidráulico.

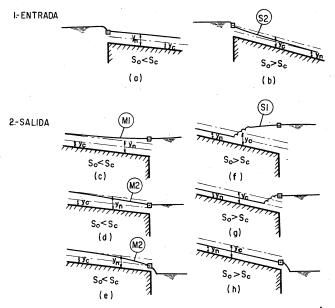
Las secciones de control también existen a la entrada o salida de un canal. Es importante el conocimiento de las -características del perfil en estas regiones y, para ilustrarlo, se considera el caso de un canal prismático largo que conecta -dos vasos de almacenamiento. Debido a la considerable longitud -del canal, la tendencia es hacia el flujo uniforme. La fig 5.6-muestra los perfiles a la entrada y salida para pendientes suave y pronunciada y para una variedad de niveles en el vaso de -salida. Las secciones de control se indican por medio de puntos encerrados dentro de un cuadrado.

A la entrada de un canal con pendiente pequeña (fig 5.6a), la condición de flujo uniforme empieza muy cerca de la entrada. Una caída brusca en la superficie del agua ocurre a la entrada por efecto de la conversión de energía cinética a potencial y de las pérdidas debidas a la turbulencia. El problema ---consiste en encontrar los valores de y y Q tales que, satisfa---ciendo a la fórmula de Manning para la pendiente So, satisfagantambién la ecuación:

$$E = y_n + Q^2/2g A_n^2 + \Delta h_z$$
 (5.11).

donde el subíndice \underline{n} corresponde a la condición de flujo un \underline{i} forme y Δ ha la pérdida por entrada.

A la entrada de un canal de pendiente pronunciada - (fig 5.6b) el perfil cae hasta el tirante crítico y después ---tiende hacia la línea de tirante normal a través de un perfil - corto tipo S2. La sección de control es crítica a la entrada --del canal, de tal manera que


$$E = y_c + \frac{Q^2}{2gA_c^2} + \Delta h_c$$
 (5.12)

existiendo para cada valor de E, uno para Q que pr $\mathbf{0}$ duzca un cr $\mathbf{\underline{1}}$ tico que satisfaga la ec (5.12).

Por lo que respecta a las condiciones de salida, un nivel alto en el depósito. en que descarga un canal de pendiente suave (fig 5.6c) produce una curva del tipo Ml que termina del lado aguas abajo con el nivel horizontal del recipiente. — Teóricamente, debería haber un ligero ascenso del nivel de la superficie del agua en la sección de salida y que es igual a la carga de velocidad. En la práctica, no hay recuperación de energía debido a que se disipa en turbulencia. Si el nivel en el de pósito está debajo de la línea de tirante normal (fig 5.6d) seproduce un perfil M2, el cual, en el límite tiene el tirante — crítico en la sección de control. Cualquier descenso del nivelen el depósito (fig 5.6c) no tiene influencia sobre el perfil.

Un nivel alto en el depósito en que descarga un --canal de pendiente pronunciada (fig 5.6f) produce un perfil Sl, empezando aguas arriba con un salto hidráulico localizado donde el tirante es conjugado del normal. A la salida los perfiles -descienden con el nivel de la superficie en el depósito hacien do que el salto se "corra" hacia abajo (fig 5.6g). Dicho salto

puede llegar a tener una forma imperfecta para diferencias pequeñas entre los niveles aguas arriba y aguas abajo. Finalmente, cuando el nivel del depósito está abajo del tirante normal (fig 5.6h) y el flujo uniforme persiste en la salida (con excepción del perfil Sl), el flujo es supercrítico y las condiciones de aguas arriba no quedan afectados, por los niveles en el depósito de aguas abajo.

Pendiente suave pendiente pronunciada

Fig 5,6 Perfiles a la entrada y salida de un canal

5.4 <u>Sintesis</u> de perfiles compuestos

Con las explicaciones dadas anteriormente se pueden interpretar cualitativamente los perfiles de la superficie libre en un canal largo, de sección uniforme, y con una gran variedad de pendientes, secciones de control y tipos de perfil. La fig 5.7 muestra dos canales, cada uno con una compuerta des lizante cerca del extremo aguas abajo, para ilustrar el procedimiento. Se supone que la abertura de la compuerta y el gasto permanecen constantes.

El primer paso consiste en dibujer las líneas de -

tirante normal y crítico, las cuales son paralelas a la plantilla. Siendo el canal prismático. el tirante crítico es el mismo en toda su longitud. En se: da, se localizan las secciones de control en los sitios aprolados de entrada y salida, en los cambios de pendiente de suave a pronunciada y en la compuerta; esta última, valida en ambas direcciones debido a quelos tirantes hacia aguas arriba y hacia aguas abajo están gobernados por la ecuación de descarga de la compuerta.

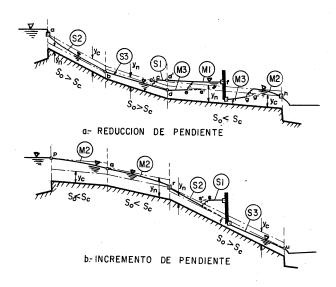


Fig 5.7 Identificación de perfiles y secciones decontrol

Con referencia a cada canal, se puede hacer el siguiente anál $\underline{\underline{i}}$ sis.

Canal a. Siendo la compuerta una sección de control se procede hacia aguas abajo de la sección f (debido a que elrégimen es supercrítico), generando el perfil M3 que termina en la sección donde se produzca el salto hidráulico. En efecto, al proceder hacia aguas arriba de la sección crítica (de control) h, se genera un perfil M2 (a régimen subcrítico). La sección g donde ocurre el salto hidráulico (que une los perfiles M3 y M2) se puede localizar tomando en consideración las condiciones que deben reunirse para que éste ocurra. En particular, debemos referirnos a la condición de igualdad de "momen

tum "antes y después del salto; esto es, teóricamente el fenómeno ocurrirá cuando los tirantes conjugados, (menor y mayor),—así como las características hidráulicas del flujo antes del —salto satisfagan la ec. (4.2) adecuada a la forma de sección(—subcapítulo 4.4). Sin embargo, para una localización más precisa, deberá tomarse en cuenta su longitud.

La fig. 5.8a presenta una ampliticación de la región que se analiza en el canal l. La curva A'B corresponde a la línea de los tirantes conjugados mayores calculados (con la ec --4.2 adaptada a la forma de la sección) correspondientes a los tirantes de perfil M3 (considerados como conjugados menores). -Por la posición del punto F' se puede estimar la longitud del salto. Por tanteos se busca la posición de una distancia hori-zontal iqual a la longitud del salto entre las curvas A'B v CD. Por ejemplo, la distancia horizontal EF es iqual a la longituddel salto correspondiente al tirante vo en r. De este modo. elsalto se formará entre G y F, debido a que el tirante en F es el conjugado del tirante en G v la distancia EF mide la longitud del salto. Debe observarse que si no se tomara en cuenta la lon qitud del salto en el análisis, el salto se formaría en el punto F', resultando así un error representado por F'F. Se observa también que a medida que crezca la distancia entre la compuerta y la sección crítica (fig 5.7a), el salto se moverá hacia aquas arriba o viceversa. Volviendo al canal, se procede en la dirección de aguas abajo de la sección de control a (debido a que el régimen es supercrítico) y se pueden trazar los perfiles 52, 53 y M3 hasta el punto æ' en la intersección con la línea de tiran te crítico. De manera análoga, se procede hacia aquas arriba de la sección de control f debido a que el flujo es subcrítico: -los perfiles M1 y S1 se extienden hasta la línea de tirante crí tico en c'.En alguna sección entre c'y c', el perfil superior tiene un tirante conjugado en el inferior ocurriendo el salto hidráulico de transición. Esto se analiza mejor si nos referi-mos a las figs 5.8b y c. El salto puede ocurrir tanto en el tra mo de pendiente pronunciada o suave dependiendo de que el tiran te y₂ aguas abajo sea mayor o menor que el tirante y'ı conjugado mayor del tirante aguas arriba y_1 . Si el tirante y_2 es mayor --que y1', el salto ocurrirá en el tramo de pendienté pronunciada, siendo la curva OC de la superficie del tipo Sl. Determinamos ahora una distancia horizontal IJ entre A'P y co que sea iguala la longitud del salto. El salto HJ empezará en la sección que contenga a I. Si el tirante y_2 baja aproximadamente a menos que y,', el salto empezará a moverse hacia el tramo de pendiente sua vē j en este caso el salto se localizará como en la fig. 5.8a. Por lo que respecta a los perfiles del canal a (fig 5.7 a) se deduce que realmente la compuerta no ayuda a controlar el gasto y más bien éste queda definido por las condiciones en la sección "a"de entrada al canal. El régimen después de la entrada es su percrítico (curva \$2) independientemente de la presencia lo nolde la compuerta aquas abajo, esto es, la sección a es de control. sin embargo, si se cerrara la compuerta a tal grado que el re-manso producido forzase a que el salto hidráulico alcanzara lasección de entrada (llegando incluso al ahogamiento), esto permitiría que todo el flujo aguas arriba de la compuerta fuera en
régimen subcrítico y ella serviría efectivamente para controlar
los gastos.

También se concluye que si se desea que la compuerta — controle efectivamente las descargas, ésta debe quedar sobre la sección a, a una distancia corta aguas abajo.

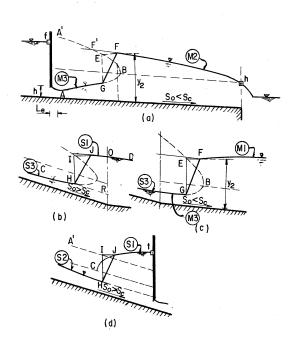


Fig 5.8 Locali ión del salto hidráulico en los ca nales de la fig 5.7

Del análisis se concluye que se debe conocer el gas to antes de determinar los perfiles de flujo. En la mayoría delos casos (como el de la fig 5.7 b), no se conoce previamente, pero puede determinarse a partir de la información necesaria --

sobre los niveles del depósito, pendientes, etc. Suponiendo un cierto valor del gasto, se calculan los valores de y_n y y_c y se determinan los perfiles de flujo aguas arriba y aguas abajo delos controles. El perfil calculado aguas arriba de la compuerta llega al depósito con ciertos valores de y y V, a partir de los cuales, se obtiene la energía específica que debería ser la disponible en la sección de entrada (fig 5.6a) para el gasto considerado. Si esto no es cierto, significa que el valor supuesto es erroneo y que debe elegirse un nuevo valor hasta que se llegue a la sección de entrada con la energía disponible.

Dada una cierta pendiente del canal, es necesario - primeramente definir si es suave o pronunciada, comparando el - valor de los tirantes crítico y normal para decidir sobre el $t\underline{i}$ po de flujo en el tramo inicial (Problema 5.1)

El tratamiento anterior es típico. Por supuesto, el rango de posibles condiciones del canal es tan grande que no —tiene objeto una explicación mas detallada. Después de identificar los perfiles, los niveles reales se evalúan por alguno de —los métodos que se explicarán posteriormente.

<u>Canal b</u>. Supuesto que el tirante en la compuerta no es mucho <u>ma</u> yor que el crítico, se encuentra una sección de control en r, — punto de transición de subcrítico a supercrítico. De este modo, un salto hidráulico en el punto s' sirve de transición entre — los perfiles S1 y S2. En la fig 5.8 d se muestra dicha transi—ción, siendo la localización del salto análoga al del caso de — la fig 5.8 b.

Procediendo en la dirección aguas arriba de r (debido a que el régimen es subcrítico) existen dos perfiles M2 distintos que llegan hasta el depósito superior en p, cuyo nivel de superficie debe ser apropiado al gasto, haciendo la consideración de una pequeña caída del nivel a la entrada del canal.

Aguas abajo de la compuerta se genera un perfil 53que termina en una caída libre hacia el recipiente inferior.

<u>Problema 5.1</u> Un canal de sección rectangular de 3 m de ancho, factor de fricción de Manning n = 0.014 y pendiente $S_0 = 0.001$ -es alimentado por un embalse cuyo nivel de superficie se encuentra 3 m arriba de la plantilla a la entrada del canal (fig 5.9). Encontrar el gasto que entra al canal.

Solución. Puesto que la energía específica a la entrada debe -- ser constante, del estado crítico en la misma resultaría que:

$$y_c = \frac{2}{3} \times 3 = 2 \text{ m}$$

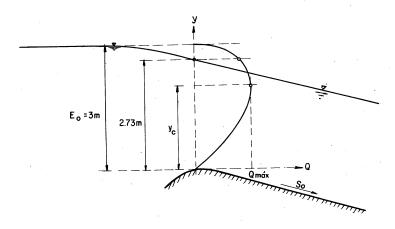


Fig 5.9. Canal del problema 5.1

Siendo entonces la velocidad crítica:

$$V_{c} = \sqrt{g y_{c}} = 4.427 \text{ m/seg}$$

y el gasto máximo que descargaría el canal sería:

Q max = b
$$y_c$$
 $V_c = 3 \times 2 \times 4.427 = 26.563 \text{ m}^3/\text{seg}$

Para el tirante crítico, el area hidráulica, perímetro mojado y radio hidráulico valen

A = 3 x 2 = 6 m²
P = 3 + 2 x 2 = 7 m

$$R_h$$
 = 6/7 = 0.857 m
 R_h ^{2/3} = 0.9022

y de la ecuación de Manning la pendiente crítica vale:

$$S_c = \left(\frac{V_c n}{R_{hc}^{2/3}}\right)^2 = \left(\frac{4.427 \times 0.014}{0.9022}\right)^2 = 0.004718$$

Este exámen preliminar implica que $S_o < S_c$ por lo cual se tendría que la pendiente es suave y que el gasto que entra al canal es menor que el máximo; esto es, el tirante a la entrada de tendrá que ser mayor que el crítico.

El tirante normal se presentaría casi a la entradadebiendo cumplirse que

$$3 = y_n + \frac{V_n^2}{2g}$$

en donde no se ha considerado pérdida de energía por la entrada. Se probarán entonces diferentes tirantes normales que, satisfaciendo la ecuación de Manning (para $S_0=0.001$), setisfacion también la ecuación anterior. Los cálculos se resumen en — la tabla 5.1 utilizando la ecuación.

$$V = \sqrt{0.001} R_n^{2/3} / 0.014 = 2.2588 R_h^{2/3}$$

Tabla 5.1. Cálculos relativos al problema 5.1.

$$y_n$$
 A
 P
 R_h
 $R_h^{2/3}$
 V
 Q
 $\frac{V^2}{2g}$
 E

 m
 m²
 m
 m/seg
 m³/seg
 m
 m

 2
 6
 7
 0.857
 0.902
 2.038
 12.228
 0.21
 2.21 \neq 3

 2.79
 8.37
 8.58
 0.976
 0.984
 2.223
 18.602
 0.252
 3.04 \neq 3

 2.77
 8.31
 8.31
 1
 1
 2.2587
 18.77
 0.26
 3.03

 2.73
 8.19
 8.46
 0.968
 0.979
 2.210
 18.010
 0.249
 2.979

Los resultados del último renglón de la tabla anterior indicanque el gasto que entrará al canal será de 18.010 m³/seg. La velocidad en el canal es de 2.210 m/seg.menor que la crítica y el

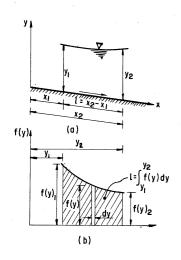
tirante normal de 2.73 m mayor que el crítico. Si en este proble ma la pendiente hybiese resultado pronunciada, el gasto habría — quedado determinado por la condición de estado crítico y correspondería al máximo ya calculado. El tirante normal para este gas to sería menor que el crítico y se presentaría hacia aguas abajo de la entrada.

5.5 Métodos de integración de la ecuación dinámica

5.5.1 Integración gráfica

La solución de la ecuación dinámica del flujo gradua<u>l</u> mente variado permite determinar cuantitativamente la forma delperfil del flujo. La solución se refiere a la integral de la ec-(5.5), esta última expresada en la forma

$$dx = \frac{1 - F_r^2}{S_0 - S_f} dy = \frac{1 - F_r^2}{S_0 - S_f} dy = f(y) dy$$
 (5.13)

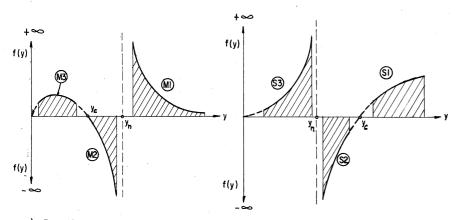

cuya solución permite determinar la distancia x en términos de y.

La solución de la ec (5.13) es bastante compleja para ser realizada en forma general para cualquier sección trans-versal y perfil del flujo. Sin embargo, siempre es posible se--guir un procedimiento gráfico como el que se explica a continuación.

Considérense dos secciones de un canal (fig 5.10a) a -- las distancias x1 y x2 respectivamente (medidas desde un origenarbitrario) y en las cuales se presentan los tirantes y1 y y2. - La distancia entre las dos secciones (medida sobre la plantilladel canal) de la ec (5.13) es

$$x_2 - x_1 =$$

$$\int_{y_1}^{y_2} f(y) dy$$
 (5.14)


La funcióm f(y) está expresada por la ec (5.13) y de pende únicamente de y, de tal manera que, considerando varios valores de y, es posible calcular los de f(y) y dibujar una curvade y contra f(y) (fig 5.10 b). De acuerdo con la ec (5.14), el -valor de x es igual al area sombreadatentre la curva, el eje y y las ordenados f(y) correspondientes a las abscisas y₁ y y₂. Di-cha área puede ser determinada for medio de un planímetro, por el uso de la regla de Simpson o por cualquier otro procedimiento-

que proporcione la precisión - requerida.

El método se aplica a cual quier tipo de perfil de flujoen canales prismáticos y no -prismáticos de cualquier forma y pendiente y, en general, esfácil de seguir. Su valor de-pende de la relativa facilidad con que pueda ser calculada la función f(y) pero, en general, es más tedioso y menos satis-factorio que el método numérico de incrementos finitos quedespués se presentará. La fig-5.11 muestra la forma de las curvas de f(y) para diferentes tipos de perfil.

Fig 5.10 Método de integración gráfica.

a) Pendiente subcrítica

b) Pendiente supercrítica

fig 5.11 Curvas que relacionan f(y) con y para diferentes tiposde perfil

<u>Problema 5.2</u>. Un canal de sección trapecial con anchos de plant \underline{i}

lla b = 8 m y taludes k = 1.5, está excavado en tierra (factor de fricción de Manning n = 0.025) con una pendiente de planti-lla S_0 = 0.0009 y deberá transportar un gasto de 15 m³/seg (fig 5.12). Con objeto de dar carga sobre una serie de orificios laterales, se desea utilizar un vertedor de cresta redonda y forma rectangular con un ancho de cresta L = $\frac{12}{2}$ m. La ley de gastos de vertido sobre el mismo es Q = $\frac{2}{2}$ Lh³/ $\frac{1}{2}$ (ver capítulo 7 Vol 1) y la altura de la cresta al fondo es w = $\frac{1}{2}$ 7 m.

Calcular el perfil de flujo y la longitud total L - del remanso considerando que termina al alcanzar un tirante que sea 3 por ciento mayor que el normal. Considere que $\infty = 1$.

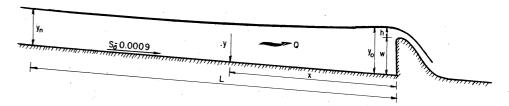


Fig 5.12 Canal del problema 5.2

 $\underline{Solución}$. Antes de determinar el perfil de flujo se requieren - algunos cálculos preliminares, tales como el de tirante normaly crítico.

Tirante normal. De no existir el efecto del remanso, el flujouniforme se establecería en el canal con un tirante normal quese obtiene con el procedimiento señalado en el capítulo anterior.

De la ec (2.35) resulta:

$$\frac{nQ}{b^{8/3}} \sqrt{s_0} = \frac{0.025 \times 15}{8^{8/3} \sqrt{0.0009}} = 0.04883$$

Esto es, A $R_h^{2/3}$ /b^{8/3} = 0.04883 y de la fig 3.7, para k = 1.5, se obtiene y_n /b = 0.1581, por tanto el tirante normal vale:

$$y_n = 0.1581 \times 8 = 1.265 \text{ m}$$

El tirante, 3 por ciento mayor que el normal, vale 1.30 m.

Este valor puede verificarse como sigue. El area - hidraúlica, perímetro mojado y radio hidráulico son:

$$A = (8 + 1.5 \times 1.265) 1.265 = 12.5203 \text{ m}^2$$

$$P = 8 + 2 \sqrt{1 + 2.25}$$
 1.265 = 12.561 m

$$R_h = \frac{12.5203}{12.561} = 0.9968$$

siendo el gasto

$$Q = \frac{12.5203}{0.025} (0.9968)^{2/3} 0.03 = 14 992 m3/seg$$

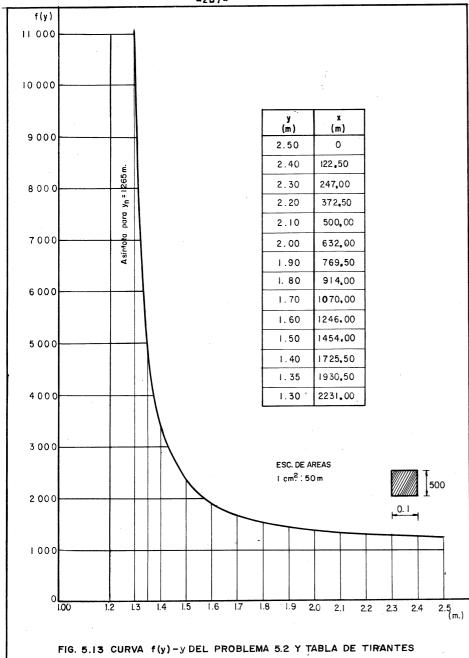
que es practicamente el que debe conducir el canal.

Para el gasto en el canal, el tirante crítico se puede calcular a partir del parámetro:

$$\frac{qk^{3/2}}{b^{5/2}\sqrt{q}} = \frac{15(1.5)^{3/2}}{8^{5/2}\sqrt{9.8}} = 0.0486$$

De la fig 3.9, para secciones trapeciales se obtiene que $ky_c/b=0.127$, siendo el tirante crítico:

$$y_c = \frac{8 \times 0.127}{1.5} = 0.677 \text{ m}$$


Para verificar este resultado, sería necesario resolver la ec - (3.9b) por aproximaciones sucesivas; sin embargo, el valor obtenido es suficiente para clasificar el perfil.

Carga sobre la cresta. De acuerdo con la ley de --vertido la carga h sobre la cresta vale:

$$h = (\frac{0}{2h})^{2/3} = (\frac{15}{24})^{2/3} = 0.731 \text{ m}$$

tbla 5.2. Cálculo de la función f (y) del problema 5

	f(y)	8	11056				4979	3424	2317.	18760 09	1646	1507	1416	1351	1305	1270	1243	1222	4,205
S ₀ - S _f	$1 - F_{r}^{2}$ 0.0009-S _f	0.88391 0	0.89445 8.09×10 ⁻³	0.89582 9.18×10	0.89715 1.026×10	0.90105 1.338×10	0.90716 1.822×10	0.91798 2.681×10	0.93525 4.044×10	0.94818 5.055×10	0.95801 5.819×10 7 1646'	0.96562 6.406×10	0.97157 6.863×10	0.97628 7.224×10		0.98311 7.743×10 7 1270	0.98561 7.931×10	0.98766 8.0854×10 1222	0.98936 8.2134×10 ⁻⁴ 1205
⊪ J ‰ LL	8 < 2B	0.11609	0.10555	0.10418	0.10285	0,09895	0,09284	0.08202	0.06475	0.05182	0.04199	0.03438	0.02843	0.02372	0.01994	0.01689	0.01439	0.01234	0.01064
	(Vn/Rh)	9.01×10-4	8.191×10_4	8.082×10_	7.974×10 ⁻⁴	7.662×10_4	7.178×10_4	6.319×10_4	4.956×10_4	3.945×10_4	3.181×10_4	2.594×10_4	2.137×10_4	1.776×10-4	1.489×10-4	1.257×10_4	1.069×10_6	9.146×10 ⁻⁵	7.866×10 ⁻⁵
>	15/A (1.1981	1.1596	1.1543	1.1491	1.1335	1.1083	1.0608	0,9756	0.9014	0,8364	0.7788	0.7276	0.6818	0.6406	0.6034	0.5696	0.5388	0.5106
A/B		1.0615	1.0870	1.0906	1.0942	1.1051	1.1231	1.1590	1.23	1.3	1.3691	1,4373	1.5047	1.5714	1.6374	1.7027	1.7674	1.8316	1.8952
P ₇ 2/3		0.9978	1.0129	1.0151	1.0173	1.0237	1.0342	1.0550	1.0956	1.1346	1.1723	1.2089	1.2444	1.2789	1.3125	1.3453	1.3773	1.4085	1.4392
F _C	A/P	0.9968	1.0194	1.0228	1.0260	1.0357	1.0518	1.0837	1.1467	1.2085	1.2693	1.3292	1.3882	1.4463	1.5037	1.5604	1.6164	1.6717	1,7265
8	8 + 3 <i>y</i>	11.7950	11.9000	11.9150	11.9300	11.9750	12,0500	12,2000	12,5000	12,8000	13,1000	13,4000	13,7000	14,0000	14,3000	14.6000	14,9000	15,2000	15,5000
ο.	8+3,6055y	12,5610	12.0884	12,7052	12,7233	12,7773	12,8675	13.0478	13,4083	13,7689	14.1294	14,4900	14,8505	15.2111	15.5717	15.9322	16.2988	16,6533	17.0139
«	(8+1.5y)y	12,5203	12,9350	12,9945	13.0542	13,2334	13.5338	14.1400	15,3750	16,6400	17,9350	19,2600	20,6150	22,0000	23,4150	24,8600	26,3350	27,8400	29,3750
>	•	1.265	90.1	1.305	1.31	1.325	1.35	1.40	1.50	9.6	1.70	1.80	1.90	2.00	2.10	2.20	2,30	2.40	2,50

Por lo tanto, el tirante inicial aguas arriba del vertedor es:- $y_0 = 1.77 + 0.73 = 2.50$ m. El perfil de flujo deberá ser del tipo Ml con tirantes comprendidos en el intervalo $y > y_0 > y_0$, youn tirante inicial $y_0 > y_0$, debiendo realizar el cálculo hacia aguas arriba.

Para calcular la función f(y) de la ec(5.13).se utilizarán tirantes mayores que $y_n=1.265\,\mathrm{m}$ con incrementos de --0.10 m (con excepción de los valores próximos a y_n para mejor --precisión) y con un límite superior que se elegirá arbitraria---mente de 2.50 m. Los cálculos se resumen en la tabla 5.2

En la fig. 5.13 se presenta la curva f(y) - y, $dib\underline{u}$ jada con los resultados de la tabla. Por medio de un planimetro se obtuvieron las áreas bajo la curva que dieron los valores de x (a la escala adecuada) para los diferentes tirantes, mismos – que se presentan en la propia fig 5.13. En la fig 5.14 se muestra un esquema del perfil de flujo en la que, los valores que – aparecen deb jo de la plantilla corresponden a x tal como se –acota en la fig 5.12.

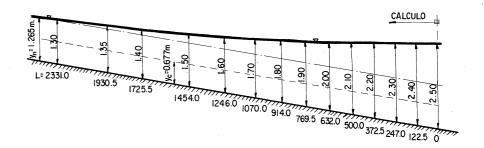


fig 5.14 Perfil de flujo del problema 5.2

5.5.2 Integración directa

La integración directa de la ec(5.13) es practicamente imposible si se desea obtener para todas las formas de sección y tipos de canal. Se han hecho muchos intentos de resolver dicha ecuación, para algunos casos especiales introduciendo hipótesis simplificadoras que permiten una integración matemática – (ref Chow). Las soluciones más útiles han sido la de Bresse --- (1860) para secciones rectangulares muy anchas, la de Bakhmeteff

(1912 y 1932) y la de Chow (1955) que mejora la solución de - Bakhmeteff y que vale principalmente para canales prismáticos.

be presenta aquí esta última solución y para ello, la pendiente de fricción S_f en la ec (5.13) se puede valuar apartir de la fórmula de Manning *

$$S_f = \left(\frac{vn}{R_h^{2/3}}\right)^2 = \left(\frac{vn}{AR_h^{2/3}}\right)^2$$
 (5.15)

La pendiente de plantilla $S_{\rm o}$ se puede determinar a partir de la ec(5.15) para el caso de flujo úniforme

$$S_0 = \left(\frac{Q n}{A_n R_{h_n}^{2/3}}\right)^2$$
 (5.16)

De este modo, con las ecs (5.15) y (5.16) el término (S_0 - S_f) de la ec (5.13) resulta

$$S_0 - S_f = S_0 (1 - \frac{S_f}{S_0}) = S_0 \left[1 - (\frac{A_n R_{h_n}^{2/3}}{A R_h^{2/3}})^2 \right] (5.17)$$

Se considera factible establecer que:

$$(A R_h^{2/3})^2 = c y^N$$
 (5.18)

donde ι es un coeficiente de proporcionalidad y N un exponente — que depende de la forma de la sección

La ec (5.17) se escribe entonces en la forma

$$S_0 - S_f = S_0 \left[1 - \left(\frac{y_n}{y} \right)^N \right]$$
 (5.19)

Por otra parte, de la ec (3.4 b) se tiene que:

$$F_r^2 = \frac{\text{QC} U^2 B}{\text{QL} A^3} = \frac{A_c^3}{B_c} / \frac{A^3}{B}$$
 (5.20)

donde $A_{ extsf{C}}$ y $B_{ extsf{C}}$ son los valores de A y B para el estado crítico.

Se supone aquí también que

$$\frac{A^3}{B} = C \quad y^M \tag{5.21}$$

donde C es un coeficiente de proporcionalidad y M un exponente que depende de la forma de la sección y del tirante.

La ec (5.20) es entonces

bien

$$\propto \frac{Q^2 B}{Q A^3} = \left(\frac{y_c}{y}\right)^M \tag{5.22}$$

Finalmente, de las ecs (5.17) y (5.22), la ec (5.13) se escribe en la forma

$$dx = \frac{1}{S_0} \frac{1 - (\frac{y_c}{y})^M}{1 - (\frac{y_n}{y})^N} dy = \frac{y_n}{S_0} \frac{1 - (\frac{y_c}{y})^M}{1 - (\frac{y_n}{y})^N} d(\frac{y}{y_n})$$
 (5.23)

naciendo u = y/y_n, la ecuación anterior es tam-

$$dx = \frac{y_{n}}{S_{0}} \left[\frac{1 - (\frac{y_{c}}{y_{n}})^{M} (\frac{1}{u^{M}})}{1 - 1/u^{N}} \right] du = \frac{y_{n}}{S_{0}} \left[\frac{u^{N} - (\frac{y_{c}}{y_{n}})^{N}}{u^{N} - 1} \times u^{N-M} \right] du$$

Invirtiendo el orden de los términos dentro del paréntesis y sumando y restando el término (1 - u^N) en el numerador del mismo, resulta

$$dx = \frac{y_n}{S_0} \left[\frac{(1 - u^N) - (1 - u^N) - u^N + (y_c/y_n)^M u^{N-M}}{1 - u^N} \right] du$$

$$dx = \frac{y_n}{S_0} \left[1 - \frac{1}{1 - u^N} + (\frac{y_c}{y_n})^M \frac{u^{N-M}}{1 - u^N} \right] du$$

Debido a que el cambio de tirante en flujo gradual mente variado generalmente es pequeño, los exponentes hidráulicos w y w se pueden suponer constantes dentro de los límitesde integración y así la ecuación anterior resulta

$$x = \frac{y_n}{S_0} \left[u - \int_0^u \frac{du}{1 - u^N} + (\frac{y_c}{y_n})^M \int_0^M \frac{u^{N-i\eta}}{1 - u^N} du \right] + const(5.24)$$

La primera integral de la ec (5.24) depende solo de u y N y se designa por

$$F (u, N) = \int_{0}^{u} \frac{du}{1 - u^{N}}$$
 (5.25)

la cual se conoce como <u>función de tlujo variado de Bakhmeteff</u>. Chow pudo resolver la segunda integral de la ec (5.24) sin introducir hipótesis simplificadoras, sino mediante los términos

 $v = u^{N/J}$ y J = N/N - M + 1 . Siendo $u^{N-M} = v^{J(1-M/N)}$ dichaintegral se transforma como sigue:

$$\int_{0}^{u} \frac{u^{N-M}}{1-u^{N}} du = \int_{0}^{v} \frac{(1-M/N) d(v^{J/N})}{1-v^{J}} = \frac{J}{N} \int_{0}^{v} \frac{J(1-M/N) v(J/N)-1}{1-v^{J}} dv$$

y siendo

$$v^{J(1-M/N)}$$
 $v^{(J/N)} - 1$ = $v^{O} = 1$

finalmente resulta:

$$\int_{0}^{u} \frac{u^{N-M}}{1-u^{N}} du = \frac{J}{N} \int_{0}^{v} \frac{dv}{1-v^{J}} = \frac{J}{N} F(v,J) (5.26)$$

donde

$$F (v, J = \int_{0}^{v} \frac{dv}{1 - v^{J}}$$
 (5.27)

que es la misma función de flujo variado de Bakhmeteff exceptoque las variables u y N se reemplazan por v y J respectivame<u>n</u> te. De este modo, usando la notación para las funciones de flujo variado, la ec (5.24) resulta:

$$x = \frac{y_n}{S_0} \left[u - F(u,N) + (\frac{y_c}{y_n})^M \frac{J}{N} F(v,J) \right] + const.(5.28)$$

La distancia / que separa dos secciones consecutivas 1 y 2 de características conocidas en un flujo gradualmente va riado, de la ec (5.28) es entonces:

$$\begin{aligned}
\lambda &= \times_2 - \times_1 &= \frac{y_n}{S_0} \left\{ (u_2 - u_1) - \left[F(u_2, N) - F(u_1, N) + (\frac{y_c}{y_n})^M \right] \right\} \\
&+ (\frac{y_c}{y_n})^M \left[F(v_2, J) - F(v_1, J) \right] \right\}
\end{aligned} (5.29)$$

donde $u = \frac{y}{y_n}$, $v = u^{N/J}$, $j = \frac{N}{N-M+1}$

y F (u, N), F (v, J) son las funciones de flujo variado, -cuyos valores fueron calculados por Bakhmeteff para N variam do de 2 a 5.5 y los cuales se reproducen en la tabla del - - apéndice A. En la ref 2 se encuentra una ampliación de estatabla hasta valores de N = 9.8, los cuales encuentran aplicación para los valores de J que resultan en canales rectangulares muy angostos (y/b > 1).

Chow examinó el comportamiento de N y M para diferentes formas de sección y relaciones tirante/ancho de --plantilla y aquí se presenta un resumen.

resulta que: 2 ln A + $\frac{4}{3}$ ln R_h = ln C + ln yⁿ

y derivando con respecto a y se obtiene

$$\frac{1}{A} \frac{dA}{dy} + \frac{2}{3R_h} \frac{dR_h}{dy} = \frac{N y^{N-1}}{2 y^N} = \frac{N}{2y}$$

siendo $B = dA/dy \ y \ R_{\dot{h}} = A/P$, de la ecuación anterior, N vale

$$N = \frac{2y}{3A} (5B - 2R_{h} \frac{dP}{dy})$$
 (5.30)

Esta ecuación indica que N no es constante sino varía con el tirante. Para un canal trapecial de ancho de — plantilla b y talud k vale

$$N = \frac{10}{3} \left[\frac{1 + 2 \cdot k \cdot (y/b)}{1 + k \cdot (y/b)} \right] - \frac{8}{3} \left[\frac{1 + k^2 \cdot (y/b)}{1 + 2 \sqrt{1 + k^2 \cdot (y/b)}} \right]$$
(5.31)

En la fig. 5.15 se presenta la variación de N de acuerdo con la ec (5.31) para secciones trapeciales con distintos valores de k y y/b y secciones rectangulares (k=0).

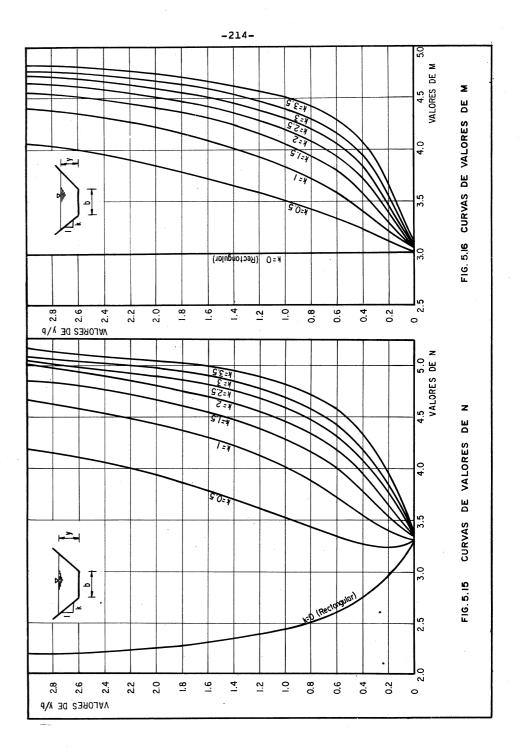
En la misma forma para $\,$ M, tomando logaritmos naturales de la ec (5.22) y derivando con respecto a $\,$ y $\,$ resulta

3 ln A - ln B = ln C + ln
$$y^{M}$$

$$M = \frac{y}{A} \quad (3 \frac{dA}{dy} - \frac{A}{B} \frac{dB}{dy}) \quad (5.32)$$

La ec (5.32) permite calcular M como función del area y tirante de la sección. Para una sección trapecial, de la ec (5.32) M vale

$$M = \frac{3 \left[1 + 2 k (y/b)\right]^{2} - 2 k (y/b) \left[1 + k(y/b)\right]}{\left[1 + 2k (y/b)\right] \left[1 + k (y/b)\right]}$$
(5.33)


En la fig 5.16 se presentan las curvas de M para -- secciones trapeciales y rectangulares. En la ref 2 se presentan las curvas correspondientes a otras formas de sección, así como las ecuaciones adecuadas para el cálculo del perfil del flujo.

Para determinar el perfil, el canal se divide en un número de tramos y la longitud de cada tramo se calcula de la ec (5.29) a partir de los tirantes conocidos o supuestos en los extremos del tramo. El procedimiento de cálculo es como sique

- 1. Se calcula el tirante normal y $_{n}$ y el crítico y $_{c}$ a partir de Q y $_{n}$.
- 2. De las figs 5.15 y 5.16 se determinan los exponentes N y M para un tirante medio estimado a partir de los tirantes en los extremos del tramo, suponiendo que la sección en estudio tiene exponentes N y M aproximadamente constantes.
- 3. Se calcula J = N/(N M + 1) y los valores de -- $u = y/y_n$ y $v = u^{N/J}$ en las dos secciones de los-extremos del tramo.
- 4. De la tabla de la función del flujo variado enel apéndice B_{γ} se encuentran los valores de F(u, N) y F(v,J),
- 5. De la ec (5.29) se calcula la longitud del tramoque separa las dos secciones extremas.

Es necesario observar una ventaja de los métodos directos que - rara vez se explota. Bebido a que la integración es directa, -- los valores sucesivos de x en la tabulación son independientes- entre si, de tal manera que la determinación de un tirante en cualquier sección del perfil no implica más que conocer los de fron tera sin tener que calcular ninguno de los intermedios.

<u>Problema 5.3.</u> Un canal trapecial tiene un ancho de plantilla – b = 5 m, talud k = 1 y para una pendiente S_0 = 0.0004, adopta – un tirante normal y_n = 1.75 m en flujo uniforme para un factorde fricción de Manning n = 0.025 (fig. 5.17). A partir de cierta sección en adelante, es necesario aumentar la pendiente del-

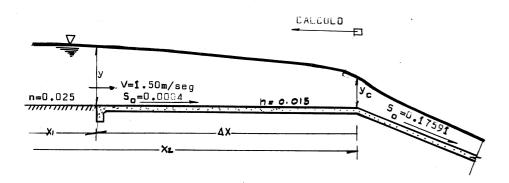
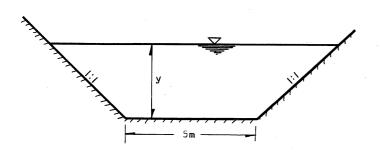



fig 5.17 Esquema del canal del problema 5.3

canal a $S_0=0.17591>S_C$ (vease problema 4.3). a) Calcular la distancia Δx que deberá revestirse de concrete (n = 0.015) supo--niendo que el material en que se excava el canal resiste hastauna velocidad de 1.50 m/seg. b) Determinar la distancia 1 hasta la cual se deja sentir la influencia del cambio de pendiente

 $\underline{\text{Solución a}}_{\bullet}.$ Para $y_n=1.75$ m, el area hidráulica, perímetro mojado y radio hidraulico son

A =
$$(5 + 1.75)$$
 1.75 = 11.8125 m²
P = $5 + 2\sqrt{2}$ 1.75 = 9.9497 m
 $R_h = \frac{11.8125}{9.9497}$ = 1.1872 m

La velocidad media y el gasto valen:

$$V = \frac{1}{0.025} (1.1872)^{2/3} (0.0004)^{1/2} = 0.897 \text{ m/seg}$$

$$Q = 11.8125 \times 0.897 = 10.5953 \text{ m}^3/\text{seg}$$

lo cual verifica el resultado obtenido en el problema 4.3

Cálculo del tirante crítico. Siguiendo el procedimiento normal, se calcula el parámetro:

$$\frac{0 k^{3/2}}{b^{5/2} \sqrt{g}} = \frac{10.595 \times 1}{5^{5/2} \sqrt{9.8}} = 0.0605$$

De la fig 3.9 resulta que k $y_c/b = 0.146$, por lo ---

tanto:

$$y_c = \frac{0.146 \times 5}{1} = 0.73 \text{ m}$$

el cual puede afinarse haciendo que se satisfaga la ec (3.4 b). Para $Q^2/g = (10.5953)^2/9.8 = 11.4551$, los cálculos se resumen - en la tabla 5.3.

Tabla 5.3 Cálculo del tirante crítico

λ ^c	Ac	A _c 3	, Bc	A_c^3/B_c	
0.73	4.1829	73.1867	6.46	11.3292 ≠	11.4551
0.735	4.2152	74.8966	6.47	11.5760 🗲	£ 11.4551
0.733	4.2022	74.2092	6.466	11.4768 ±	11.4551

Por lo tanto, $y_c = 0.733$ m y la velocidad crítica vale:

$$V_c = \frac{10.5953}{4.2022} = 2.521 \text{ m/seg}$$

Es necesario calcular la pendiente crítica para n = 0.015. Siendo el perímetro mojado: P_c = 5 + 2 $\sqrt{2}$ k0.733 = 7.0732 m y el radio hidráulico, R_{h_c} = 4.2022/7.0732 = 0.594 m, la pendiente crítica vale:

$$S_c = \left(\frac{V_c}{R_{h_c}}\right)^2 = 0.002864$$

pentro de la zona revestida el factor de fricción es n=0.015, por lo tanto, para aplicar el método de Chow será necesario calcular el tirante normal que se establecería en elsupuesto de que todo el canal estuviese revestido. Esto se debe a que dicho método vale para canales prismáticos y sin cambiosde rugosidad. Para n=0.015 y el mismo gasto, se procede enton ces a calcular el tirante normal.

Se calcula el siguiente parámetro

$$\frac{nQ}{Ab^{8/3} S_0^{1/2}} = \frac{0.015 \times 10.5953}{5^{8/3} \times (0.0004)^{1/2}} = 0.1087$$

Por lo cual, de acuerdo con la ec (2.35), $AR_h \frac{2/3}{b}/3\pm0.1087$ y dela fig. 2.7 se obtiene $y_n/b=0.26$ y de aquí

$$y_n = 0.26 \times 5 = 1.30 \text{ m}$$

La tabla 5.4 permite afinar este resultado utilizan do la ecuación: Q = A $\rm Rh^{2/3}S_0^{1/2}/n$ = 1.3333 A $\rm Rh^{2/3}$

Por lo tanto, el tirante normal para $n=0.015\,$ es 1.306 m y la velocidad vale

$$v_n = \frac{10.5953}{8.2356} = 1.2865 \text{ m/seg} < 1.50 \text{ m/seg}$$

De los resultados obtenidos se deduce que: $y_n > y_c$ y $S_0 < S_c$ en el canal aguas arriba del cambio de pendiente y que - $S_0 > S_c$ y el canal aguas abajo del cambio de pendiente, el tiran te crítico se presentará en dicho cambio. Por lo tanto, el per fil en el tramo aguas arriba será del tipo M2 debiendo realizar el cálculo hacias aguas arriba de la sección crítica. Para el - tramo aguas abajo el perfil es del tipo S2 y el cálculo se haría hacia aguas abajo de la sección crítica. En embos casos, el tirante crítico sería la condición inicial para efectuar el cálculo.

El area de la sección donde se va a calcular el ti-

$$A = \frac{10.5953}{1.50} = 7.0635 \text{ m}^2$$

Lebiendo verificarse que:

$$(5 + y) y = 7.0635$$

resulta que y = 1.149 m. Por lo tanto, el problema que se plantea consiste en encontrar la distancia ΔX que separa la seccióncrítica (de tirante y_c = 0.733 m) y una sección cuyo tirante es de 1.149 m, donde la velocidad es de 1.50 m/seg.

Para aplicar el método de Chow, el tirante medio será:

 $y_m = (0.733 + 1.149)/2 = 0.941 \text{ m y } y_m/b = 0.941/5 = 0.1882. \text{ Delas figs. } 5.15 \text{ y } 5.16, \text{ los exponentes hidraulicos son } N = 3.4 \text{ y} M = 3.2. El valor de J = <math>3.4/(3.4 - 3.2 + 1) = 2.833.$

Para cada sección se calculan los valores de u y v como se indica en la segunda y tercera columna de la tabla 5.5 (N/J = 1.2, y_n = 1.306 m)y de las tablas del Apéndice B se — intercolan los valores F(u,N) y F(v,J) Tabla 5.5 Cálculo de las funciones de flujo variado de Chow. Y y y Y F(u,N) F(v,J) Sección 2 0.733 0.56126 0.50003 0.580512 0.52034

De la ec (5.29) resulta

$$\Delta x = x_2 - x_1 = \frac{1.306}{0.0004} - 0.31853 - (-0.519921) + (\frac{0.733}{1.306})^{3.2} \times \frac{2.833}{3.4} (-0.587358)$$

 $\Delta x = 3265 \ (-0.31853 + 0.519921 - 0.0770877)$

Haciendo operaciones resulta que:

 $\Delta x = 406 \text{ m}$

µeberán revestirse 406 m desde la sección de cambio de pendiente hacia aguas arriba.

Solución b Para este segundo caso, se trata de encontrar la distancia l que hay entre la sección de tirante -- y = 1.149 m y otra en que el tirante fuera, por ejemplo, l porciento menor que el normal $y=1.75-0.01 \times 1.75=1.73$ m, estos dentro del tramo de rugosidad n=0.025. El perfil en esta zona sigue siendo del tipo M2.

El tirante medio será : y = (1.149+1.73)/2=1.44m y --y y b=0.288 .Por lo tanto, N=3.45, M=3.25 y J=3.45/(3.45-3.25+1) = --m2.875. Siguiendo el mismo procedimiento que antes, se resumen en - la Tabla 5.6 los cálculos necesarios para obtener la distancia"l" (N/J)=1.20, y =1.75m .

TABLA 5.6 CALCULO DE LAS FUNCIONES DE FLUJO VARIADO DE CHOW.

Sección 2 1.149 0.65657 0.60358 0.69463 0.64538

Sección 1 1.73 0.98857 0.98630 1.79350 1.92938

dif -0.33200 -1.10387 -1.28410

De la ecuación 4.29 resulta:

$$A = \frac{1.75}{0.0004} \begin{bmatrix} -0.33200 -(-1.10387) + (\frac{0.733}{1.75}) \times \frac{2.875}{3.45} + (1.28410) \end{bmatrix}$$
 $A = 3100 \text{ m}$

Esta longitud sumada con Δx proporciona la distan—cia total de 3506 m de influencia del cambio de pendiente, medida desde la sección donde ocurre dicho cambio hacia aquas arriba.

5.6 Métodos de incrementos finitos en canales prismáticos

5.6.1 Método para el cálculo de la longitud del tramo

El método de incrementos finitos es el que tiene — aplicaciones mas amplias debido a que es adecuado para el análisis de perfiles de flujo tanto en canales prismáticos como no — prismáticos.

En los métodos antes expuestos se ha tenido que def \underline{i} nir una serie de tirantes a partir de los cuales se han calcula-

do las distancias que separan dichas secciones. Normalmente — esto puede adaptarse una buena parte de los problemas; sin—embargo, en ocasiones el problema amerita el conocimiento del tirante en secciones previamente especificadas y es aquí donde el método de incrementos finitos se adapta mejor para realizar dicho cálculo. Si el canal es prismático, la sección,—pendiente y rugosidad son constantes siendo entonces conveniente elegir secciones separadas la misma distancia.

A partir de una sección de control, se determinan sucesivamente los tirantes procediendo hacia aguas arriba de di cha sección en el caso de flujo subcrítico o hacia aguas abajo en el caso de supercrítico.

Sustituyendo las ecs (5.2) y (5.3) en la (5.1b) - resulta que

$$\frac{dE}{dx} = S_0 - S_f \tag{5.34}$$

En la fig 5.18 se presenta el tramo de un canal-prismático limitado por las secciones l (aguas arriba) y 2--- (aguas abajo) separadas la distancia Δx . Al aplicar la ec -- (5.34) a dicho tramo, resulta:

$$E_2 - E_1 = \left(S_D - S_f\right) \Delta x \qquad (5.35a)$$

en la cual: $E_1 = y_1 + v_1^2 / 2g$, $E_2 = y_2 + v_2^2 / 2g$ 5 = $-\Delta z / \Delta x$ es la --- pendiente de la plantilla y S_f es la pendiente media de fricc<u>ión</u> entre las dos secciones.calculada a partir de la siguiente ecuación:

$$h_f = S_f \Delta \times = \frac{1}{2} \left(S_{f_1} + S_{f_2} \right) \Delta \times (5.36)$$

donde S_{f_1} y S_{f_2} son las pendientes de fricción en las secciones l y 2, las cuales se pueden calcular con la fórmula-de Manning, como sigue:

$$S_{f_1} = \left(\frac{V_1 n_1}{Rh_1^{2/3}}\right)^2$$
 (5.37a)

$$S_{f_2} = \left(\frac{V_2 n_2}{R_h^{2/3}}\right)^2 \tag{5.37b}$$

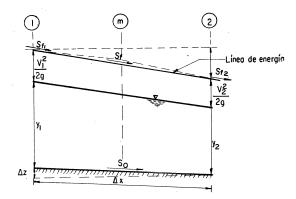


Fig. 5.18. Tramo corto de un canal prismático

De acuerdo con el sentido en que se efectúa el - - calculo, se conocerán las características hidráulicas en alguna de las dos secciones, la l si el cálculo es en la direccióndel flujo o la 2 si es en dirección contraria. El procedimiento consiste en suponer un valor tentativo del tirante en la -- sección desconocida y ajustar dicho valor mediante la verificación a través de las ecs (5.37 a y b), (5.36) y (5.35a).

Cuando las secciones no están previamente especificadas y más bien se trata de determinar el perfil completo, es factible volver al caso de los métodos directos especificando -- mas bien un tirante desconocido y calculando la distancia a que se encuentra la sección que posee dicho tirante.

En efecto, de la ec (5.35a) dicha distancia vale:

$$\Delta x = \frac{E_2 - E_1}{S_0 - S_f} \tag{5.35b}$$

Sin embargo, es necesario que las características que se especifiquen para la sección desconocida no produzcanlongitudes Δx muy grandes que induzcan errores serios dadoque se trata de un procedimiento de incrementos finitos.

<u>Froblema 5.4.</u> Resolver la primera parte del problema 5.3 utilizando cinco tramos de longitudes distintas para definir la longitud de la zona revestida en el canal.

Solución. Dado que el perfil del flujo es del -tipo M2 el cálculo se hará hacia aguas arriba de la sección -

APENDICE A

	8.8	0.000	0.080	300	0.160	0.200	0.260	0.30	0.340	0380	0.420	0.440	0.500	0.540	0.580	0.600	0.631	0.651	0.681	0.702	0.723
	*	0.000	0.080	329	0.160	0.20	0.240	0.300	340	0.380	0.400	0.440	0.50	25.00	0.580	0.600	631	0.651	0.682	0.702	0.734
	9.0	0.000																			
	9.8	0.000				_															0.735
•	8.2	00000					0.260	•													
z -	7.8	0.000			_														0.694		0.727 0.737 0.748
-	7.4	00000													_						
_	0.7	00000			_						_					<u></u>					
001	9.9	00000				_			_				_		_						
	6.2	0.000									_				_						
	5.8	0.000								_											
z _o	5.4	0.000														_					
0 1	5.0 5	0.000																			
~~	6.6 5									_	_										
		0.000																			1 0.752 4 0.765 8 0.779
	4.2	0.000					0 0 0 0								_						0.781
	4.0	0.000	_		****				~_								_				
	3.8	0.000	0.080	25.5	0.0 0.160	0.20	0.260	0.301	0.341	0.382	0.403	0.444	0.508	0.551	0.586	0.631	0.655	0.692	0.705	0.744	0.772
	3.6	0.000	0.080	825	0.160 180	0220	0.240	0.301	0.342	0.383	0.403	0.445	0.50	0.554	0.599	0.635	0.659	0.684	0.723	0.750	0.793
	3.4	0.000	0.080	6.00	0.160	0.20	0.261	0.301	0.342	0.383	0.404	0.468	0.511	0.556	0.603	0.627	0.677	0.703	0.729	0.757	0.802
	3.2	0000	0.080	889	0.160	0750	28.5	0.302	0.343	0.384	0.405	44.0	0.514	25.0	0.607	0.631	0.669	0.709	0.737	0.766	0.811
	3.0	0.900																			0.807
	2.8	0.000	0.080	888	8 8	0.20	0.262	0.303	0.344	0.387	0.408	24.0	0.521	988	0.618	0.667	0.694	0.727	0.767	0.787	0.837
	2.6	0.020								_											
	2.4	00000										_									
	2.2	0.000					0.265			_					_						
	z/,	86.00			_					_					_						

TABLA DE LA FUNCION DE FLUJO VARIADO (continuación)

1																										
18 18 18 18 18 18 18 18	0.754 0.765 0.787 0.787	0.809	0.844	0.868	0.894	0.922	0.953	0.989	1.033	1.087	1.108	1.165	1.208	1.447	×	0.494	0.262	0.196	0.159	0.098	0.000	0.069	0.055	0.045	0.038	0.035
18 18 18 18 18 18 18 18	0.755	0.810	0.845	0.870	0.997	0.925	0.957	0.994	8	8 2	223	1.183	302	1.476	8	0.519	0.237	0.209	0.143	0.106	5 6	0.075	0.060	0.050	600	0.036
Color Colo	0.756	0.811	984	0.873	0.900	0.929	196.0	0.999	6	1.112		_	-		_			_								
18 18 18 18 18 18 18 18	0.757	0.813	0.84	0.875	0.903	0.933	20.0	900	1.055	125	1.147	1.210	9.3	1.530	R	0.391	0.269	0.237	0.165	0.143	7 6	. 60	0.075	0.063	450	0.090
Color Colo	0.758	0.815	0.852	0.878	0.907	0.937	0.972	1.012	1.062	1.136	1.157	1.224	1.275	1.560	8	0.420	0.289	0.257	0.212	0.158	3 :	10	0.092	0.071	190	0.056
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													388	989	8	0.851	0.360	0.276	0.228	27.0	3 5	0.123	0.092	0.080	90.0	0.00
Color Colo	0.784	0.820	0.846	0.887	0.916	0.949	0.986	953	1.08	1.119	1.221	1.263	919	1.635	8	0.697	0.389	0.300	0.249	0.188		0.13/	0.106	0.090	0.078	0.068
Color Colo	0.763	0.823	0.863	0.891	0.922	0.956	0.995	900	1.09	1.133	1.207	1.284	1.344	1.678	8	0.746	0.422	0.327	0.272	0.208	9 2	36	8 6 6	0.102	0.089	0.034
0.00 0.	0.766	0.828	0.868	0.898	0.929	0.964	98	288	Ξ	1.149	1.262	309	1.373	1,725	8	0.803	0.459	0.358	0.300	0.23	2 5	0.158	0.135	200	0.102	980
Coloniary Colo	0.769	0.832	0.874	0.905	0.937	0.974	1.016	38.8	1.128	1.319	1.288	1.337	4 5	780	8	0.870	0.502	0.394	0.333	0.259	7170	2.0	0.165	0.135	9	0.105
Color Colo	0.773 0.786 0.798 0.811	0.838	0.886	0.912	0.947	0.986	020	88	148	1.246	1,339	1.372	565	1845	8	0.951	0.551	0.436	0.370	0.289	0.239	0.20	0.176	0.155	0.137	0.12
Color Colo	0.778	0.845	0.875	0.923	0.959	0.999	2 5	20.2	1.172	1.275	- 5 - 3 - 3	409	1.487	1.917	8	0.737	0.610	0.486	0.415	0.328	0.273	0.234	0.20	0.181	0.161	0.145
Color Colo	0.784 0.798 0.811 0.825	0.854	0.90	0.935	0.973	1.015	38	1123	198	1310	1.386	1.454	1.637	2002	8	1.138	0.681	0.546	0.469	0.374	0.315	0.272	0.239	0.212	0.19	0.181
Colon Colo	0.820	0.885	0.914	0.950	0.990	88	88	.15	1.232	351	1,393	1.508	1.598	2.102	8	1.28	0.766	0.620	0.535	0.396	900	3.0	282	0.253	0.229	0.208
Colon Colo	0.802	0.878	0.933	0.969	1.012	080	8-	4 6	1.272	133	502	1.573	1.671	2.223	8	1.41	0.873	0.711	0.618	0.504	2 5	0.379	0.338	0.305	0.278	0.255
0.000 0.000	0.808 0.823 0.838 0.854	0.987	0.922	0.980	1025	1.075	35	202	788	1.355	1.538	1.610	880	2.283	8	1.508	0.936	0.766	0.668	0.548		0.415	0.392	0.337	0.308	0.283
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.830 0.830 0.862 0.862	0.896	0.952 0.962 0.972	0.993	98	1.091	1.152	1.226	1.322	1.464	1.514	1.652	1.761	2.370	8	1.610	0.902	0.828	0.725	0.598	0.516	0.485	0.433	0.374	0.343	0.329
0.00 0.	0.823 0.839 0.855 0.872	0.907	0.965	1.00	88	2 :	25	1.25	1.352	5 2	1.554	1.699	2.814	2.457	8	1.225	1.089 0.978	0.900	0.790	0.656	90.0	0.50	6.457	0.417	388	0.356
0.000 0.000	0.0000000000000000000000000000000000000	0.938	0.958	1.024	101	1.131	1.197	23,2	1.385	2.5	1.598	1.752	2,070	2.554	8	386	1.182	0.982	0.785	0.723	0.630	0.563	0.536	0.468	0.432	0.402
0.000 0.000	0.844 0.878 0.896	0.954	1.019	5,00	1.095	1.156	22.5	1	1.423	1.497	2.6	1.812	250	2.663	8	1.508	1.291	1.078	0.955	0.802	0.70	63.5	0.575	0.629	65	0.473
0.000 0.000	0.857 0.874 0.911	0.950	860	1.065	1.120	8	1.257	888	1.487	8 4	1,707	1.880	2.017	2.788	8	2.184	1.286	1.19	0.960	0.838	200	0.74	0.652	0.602	99	0.522
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.830 0.909 0.929	0.970	5 2 3	1.00	1.149	1.216	3 %	36.5	1.618	200	1.773	1.959	2.106	2.931	8	1.818	1.572	1.327	88	0.948	0.00	0.812	0.746	0.692	0.647	0.627
0.0840 0.0850 0.	0.830	1.017	88	1.121	1.182	1.255	338	65.5	1.582	1,780	963	2.056	2.212	3.097	8	2.022	1.602	1.493	332	1.082	1.026	0.836	7880	0.805	0.75	0.73
	0.054 0.054 0.054 0.054	1.022	1.089	1.167	1223	1.302	380	2 6 8	1.662	1.86	2.045	2.165	2,333	3.292	8	2.266	1.807	1.71	25	25.2	9	88	0.0.0	0.950	0.882	0.820
0.075 0.075	0.940	2.05 580 580 580	255	1.20	1314	1.357	1452	38.2	1.737	2 6	2.055	2.294	2.477	3.523	8	2.587	2.273	1.96	1.851	1.552	5	38	1,28	1.138	1.078	1.027
	0.75 0.75 0.78 0.78	0.80	28.2	0.85	0.88	0.80	86.6	200	0.850	0.980	0.975	0.985	0.990	0.999	3	88	1.010	1.020	88	88	9 9	38	2=2	2:	2	2:

TABLA DE LA FUNCION DE FLUJO VARIADO (continuación)

0.0039 0.	000000000000000000000000000000000000000
0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	
0.000000000000000000000000000000000000	000000000000000000000000000000000000000
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	000000000000000000000000000000000000000
00000000000000000000000000000000000000	000000000000000000000000000000000000000
0.000 0.0000 0.0000	000000000000000000000000000000000000000
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	000000000000000000000000000000000000000
0.0003 0.	000000000000000000000000000000000000000
0.000000000000000000000000000000000000	000000000000000000000000000000000000000
00000000000000000000000000000000000000	000000000000000000000000000000000000000
0.0000	550000000000000000000000000000000000000
0.0114 0.	000000000000000000000000000000000000000
0.0094	000000000000000000000000000000000000000
0.0039	000000000000000000000000000000000000000
0.0224 0.0226 0.	000000000000000000000000000000000000000
0.0222 0.0228 0.0228 0.0228 0.0128 0.0131 0.0131 0.0238 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328	000000000000000000000000000000000000000
0.026 0.028 0.028 0.028 0.028 0.028 0.018	000000000000000000000000000000000000000
0.0343 0.0284 0.0284 0.0284 0.0284 0.0284 0.0284 0.0284 0.0182 0.0183 0.	0.000
0.038 0.038 0.034 0.034 0.034 0.024 0.026 0.026 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036	0000 0000000000000000000000000000000000
0.0443 0.0443 0.0443 0.0316 0.	000000000000000000000000000000000000000
0.0500 0.0450 0.0450 0.0450 0.0450 0.0350 0.	0.0000000000000000000000000000000000000
0.0554 0.0554 0.0554 0.0553 0.0553 0.0553 0.0353 0.	0.009 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037
0.0594 0.0578 0.0578 0.0574 0.0574 0.0577 0.	0.0068 0.0068 0.0068 0.0038 0.0038 0.0018
0.000 0.000	0.028 0.028 0.028 0.028 0.028 0.028
11003 11003	0.0230 0.139 0.038 0.069 0.069 0.069
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

crítica cuyo tirante es $y_c = 0.733$ m, hasta terminar en la --sección de tirante y = 1.149 m.

Mediante la ec (5.35b) se encontrarán las distan-cias que separan las secciones cuyos tirantes especificaremospreviamente. Lo más sencillo sería incrementar linealmente esos
tirantes. calculando el incremento uniforme como sique:

$$\Delta y = \frac{1.149 - 0.733}{5} = 0.832 \text{ m}$$

siendo los tirantes: $y_r = 0.733 \, \text{m}$, $y = 0.816 \, \text{m}$, $y = 0.8994 \, \text{m}$ $y = 0.9826 \, \text{m}$, $y = 1.0658 \, \text{m}$ $y = 1.149 \, \text{m}$. Sin embargo, debido a que en la proximidad de la sección crítica es mayor la curvatura del perfil de flujo, convendrá que en dicha zona se elijan incrementos mayores para obtener distancias Δx que no sean muy pequeñas en comparación con las otras.

Se proponen, por ejemplo, los siguientes tirantes:

$$y_c = 0.733 \text{ m}$$

$$y = 0.91 m$$

$$y = 0.99 m$$

$$y = 1.06 m$$

$$v = 1.11 m$$

$$v = 1.149 m$$

Calcularemos en seguida la distancia Δx a que se encuentran las secciones de tirante $y_c=0.733$ m y=0.91 m. Siguiendo la nomenclatura de la fig 5.17, la sección 2 corresponde a la crítica y la la la de tirante y=0.91 m. Para —cada una de estas secciones calculamos los elementos geométricos e hidráulicos como sigue:

Sección 2.
$$v = 0.733 \text{ m}$$

$$A_2 = (5 + 0.733) 0.733 = 4.2023 m^2$$

$$P_2 = 5 + 2 \sqrt{2} = 0.733 = 7.0732 \text{ m}$$

$$R_{h_2} = \frac{4.2023}{7.0732} = 0.594 \text{ m}$$

$$R_{h_2}^{2/3} = 0.7067$$

$$V_2 = \frac{10.5953}{4.2023} = 2.521 \text{ m/seg}.$$

$$\frac{V_2^2}{2\pi} = 0.324 \text{ m}$$

$$E_2 = 1.05734 \text{ m}$$

$$S_{f_2} = \left(\frac{V_2 n}{R_{h_2/3}^{2/3}}\right)^2 = \left(\frac{2.521 \times 0.015}{0.7067}\right)^2 = 0.0028638$$

Sección 1.
$$y_1 = 0.91 \text{ m}$$

$$A_1 = (5 + 0.91) 0.91 = 5.3781 m^2$$

$$P_1 = 5 + 2 \sqrt{2}$$
 0.91 = 7.5739 m

$$R_{h_1} = \frac{5.3781}{7.5739} = 0.7101 \text{ m}$$

$$R_{h_1}^{2/3} = 0.7959$$

$$V_1 = \frac{10.5953}{5.3781} = 1.9701 \text{ m}$$

$$\frac{V_1^2}{2g} = 0.1980 \text{ m}$$

$$E_{s} = 1.1080 \text{ m}$$

$$S_{f} = \left(\frac{V_{1} n}{R_{h_{1}}^{2/3}}\right)^{2} = \left(\frac{1.9701 \times 0.015}{0.7959}\right)^{2} = 0.0013784885$$

La pendiente media de fricción vale:

$$S_f = \frac{0.0028638 + 0.001378}{2} = 0.002121$$

Aplicando la ec (5.35b), la distancia entre las dos secciones vale:

$$x = \frac{1.05734 - 1.1088}{0.0004 - 0.002121} = \frac{-0.05068}{-0.001721} = 29.45 \text{ m}$$

Por un procedimiento semejante se puede calcular la distancia que hay entre las secciones de tirante $y_1=0.90~\text{m}$ y y = 1.00 m. La primera pasa a ser la sección 2 y la segunda la-1. Los cálculos se pueden resumir en la tabla 5.7 para el total de las secciones.

Tabla 5.7. Cálculo de tirantes-distancias por el método de incrementos finitos

y	٨÷	P _i	R _{hi}	2/3 R _{hi}	٧ _i	2 V _i /2	g E _i	Sfi	Sf	Δ×
(m)	(m ²)	(m)	(m)		(m/se	∍g)(m)	(m)			(m)
0.733	4.2023	7.0732	0.5941	0.7067	2.5213	0.3243	1.0573	0.002864	0.002121	29.45
0.91	5.3781	7.5739	0.7101	0.7959	1.9701	0.1980	1.1080		0.002721	29.40
									0.001207	55.59
0.99	5.9301	7.8001	0.7603	0.8330	1.7867	0.1629	1.1529	0.001035		
									0.0009276	87.07
1.06	6.4236	7.9981	0.8031	0.8640	1.6494	0.1388	1.1988	0.0008200	כ	
									0.0007602	99 .1 6
1.11	6.7821	8.1396	0.8332	0.8855	1.5622	0.1245	1.2345	0.0007004	1	
									0.0006613	111.84
1.149	7.0652	8.2499	0.8564	0.9018	1.4996	0.1147	1.2637	0.0006222	2 .	

L=\$Ax = :383.11 m

Los resultados indican que debe revestirse una longitud que $v\underline{a}$ le

$$L = 2945 + 5559 + 87.07 + 99.16 + 111.84 = 383.11m$$

que tiene una diferencia del 6% respecto de la distancia de -406 m obtenida con el método de Chow (Problema 5.3). En la fig
5.19 se presenta un esquema del perfil de flujo de acuerdo con
los resultados aquí obtenidos.

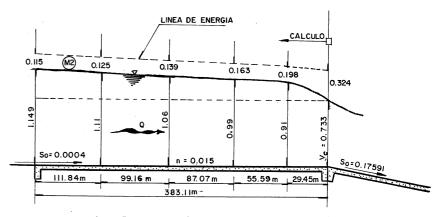
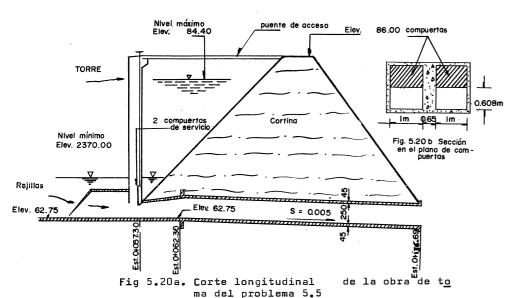



Fig. 5.19 Perfil del flujo en el problema 5.4

Problema 5.5. En la obra de toma, cuya geometría se muestra en la fig 5.20 a, las extracciones desde el embalse se controlanmediante dos compuertas de servicio que obturan dos orificiosde l m de ancho cada uno y dentro del intervalo de niveles dembalse indicados. El túnel es circular de 250 m de diámetro y revestido de concreto (factor de fricción de Manning n = 0.015). Suponiendo despreciable la pérdida de energía en la rejilla ydescarga libre hacia el túnel, definir el perfil del flujo que se establecería dentro del mismo para el nivel máximo en el embalse. Para ello considerar que la abertura de las compuertases a = 0.608 m y que la sección en el plano de la compuerta tiene la forma indicada en la fig 5.20 b. El coeficiente $\mathbf{v} = \mathbf{1}$.

Solución. será necesario calcular el gasto descargado por lascompuertas. La carga con que operan las mismas es $y_1=84.40-62.75=21.65$ m y la relación entre dicha carga y la abertura de las mismas es $y_1/a=21.65/0.608=35.6$. De la fig ---6.16 del vol. I el coeficiente de gasto se aproxima al valor - $C_a=0.60$. De la ec (6.25) del Vol. I, el gasto descargado por las dos compuertas vale:

 $Q = 0.60 \times 2 \times 0.608 \sqrt{2 \times 9.8 \times 21.65} = 15.03 \text{ m}^3/\text{seg}$

De la ec 6.27 del Vol I el coeficiente de velocidad vale:

$$C_{v} = 0.960 + 0.098 \times \frac{0.608}{21.65} = 0.963$$

y de la ec (6.26 b) del mismo volúmen el coeficiente de contracción resulta

$$C_{c} = \frac{1}{2} \frac{0.608}{21.65} \left(\frac{0.60}{0.963}\right)^{2} + \sqrt{\frac{1}{2} \frac{0.608}{21.65} \left(\frac{0.60}{0.963}\right)^{2}} + \left(\frac{0.60}{0.963}\right)^{2}$$

$$C_c = 0.629$$

Luego el tirante en la sección contraída vale:

$$y_2 = 0.629 \times 0.608 = 0.3821 \text{ m}$$

De acuerdo con la ec (6.28) del vol I dicho tirante se presenta a cierta distancia de la sección de compuertas, que vale:

$$1 = \frac{0.608}{0.629} = 0.967 \text{ m}$$

De la ec (5.35 a) se puede determinar el tirante en la estación

0 + 062.30 (sección que llamaremos 3), en que se inicia el -túnel.

La distancia entre la sección contraída y dicha--estación es:

$$\Delta x = 62.30 - (57.30 + 0.967) = 4.033 m$$

El área, perímetro mojado, radio hidráulico, --velocidad y pendiente de fricción en la sección contraída -valen:

$$A_2 = 2 \times 0.3821 = 0.7643 \text{ m}^2$$

$$P_2 = 2 (1 + 2x0.3821) = 3.5284$$

$$R_{h_2} = \frac{0.7643}{3.5284} = 0.2166$$

$$V_2 = \frac{15.03}{0.7643} = 19.665$$
 m/seg

$$\frac{{\rm V_2}^2}{2\rm g} = 19.73 \text{ m}$$

$$E_2 = 0.3821 + 19.73 = 20.112$$

$$S_{f_2} = \left(\frac{19.665 \times 0.015}{0.2166^{2/3}}\right)^2 = 0.6688$$

Mediante un procedimiento - de iteración se puede calcularel tirante en la sección

0 + 062.30 (sección 3 de forma circular) siendo que, de acuerdo con los datos de la fig 3.20a, la pendiente del piso entre las -dos secciones es $S_{\rm o}$ = 0. Sustituyendo en la ec (5.35a) resulta

$$20.112 - \left(y_3 + \frac{v_3^2}{2g}\right) = \frac{1}{2} \left(0.6688 + S_{f_3}\right) 4.033$$

En la tabla 5.6 se resumen los cálculos necesarios para encontrar el tirante y_3 que verifique la ecuación anterior. En dicha tabla se han obtenido los elementos geométricos de la sección circular a partir del apéndice A.

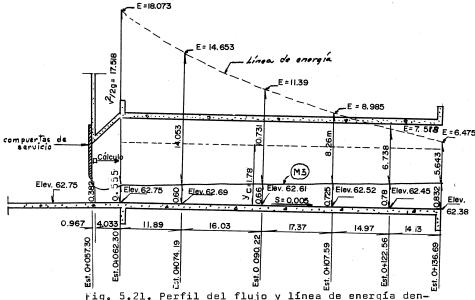
Por lo tanto, el tirante al inicio del túnel es $y_3 = 0.555$ m. – Es necesario ahora calcular el tirante crítico en dicho túnel.-Siguiendo el procedimiento conocido se calcula el parámetro:

$$\frac{Q}{\sqrt{g} \cdot p^{5/2}} = \frac{15.03}{\sqrt{9.8} \cdot 2.5^{5/2}} = 0.4858$$

con este valor, de la fig 3.10 resulta que y /D = 0.712; por lo tanto y = 1.78 m. Para y /D = 0.712, de la tabla 2.5 resulta que A_c = 3.7388 m², Rh_c = 0.7438 m, V_c = 15.03/3.7388 = 4.0201 m/seg. Por lo tanto, la pendiente crítica vale

$$S_{c} = \left(\frac{4.0201 \times 0.015}{0.7438^{2/3}}\right)^{2} = 0.005396$$

Debido a que $S_c > 0.005$, el perfil del flujo será -- del tipo M3 y el cálculo se realizará hacia aguas abajo.


Pontro del túnel el perfil del flujo se calculará - utilizando ahora la ec (5.35 b). En la tabla 5.9(similar a la - 5.7) se resumen los cálculos. La primera y segunda columna indican los tirantes que se especifican y, la última, la distanciaque separa las secciones en que se han especificado los tirantes.

De acuerdo con estos resultados, en la fig 5.21 se — muestra un esquema del perfil del flujo donde se indican también la línea de energía (LE) que indica el nivel total de energía a lo largo del túnel y que resulta de los valores Ei de la tabla-5.9.

<u>Problema 5.6.</u> En el problema 4.1 determinar la posición del salto hidráulico si la pendiente del canal vale $S_0=0.0009$.

Solución. Debido a que esta pendiente es mayor que la obtenidaen el problema 4.1, el salto se "barre". Calcularemos el tirante normal en el canal para esta pendiente y para ello se requiereel valor del siguiente parámetro:

							. :	٠.	1.89	}	16.03	17.37		14.97	14.13	
	×						Δ×	1 (E		:	16	17		14	14	
	(Sf2 + Sf3)		2,3870	2,0555	2,0426	2.0301	S	-	0.2927		0.2085	0.1435		0.1030	0,0788	
	S _{f3} ½ (0.5149	90980	0.3441	0.3379	Sf.		0,3379	0.2475	7608	•	0.1175	0.0885		0.0691
	E2 - E3	E	- 3,9904	1.5814	1.8124	2,0389	E H	(E)	18.0731	14,6529	7005 11		8,9849	7,5180		6.4751
j j	E3	Ε	24,1024	18,5306	18,2996	18.0731	na 5.5.	67 (E)	I	14.0529	40 0307	•	8.2600	6,7380		5.6431
	V3/2g		23,6024	17,9806	17.7471	17.5181	s del problema 5. Vi	(m/sen)	(6.5. /m.)	16,5963	10 BOOR		12,7238	11,4919		10.5169
	۳۸	m/seg	21.5083	18,7728	18,6505	18,5298	Resúmen de los cálculos R _{hi} 2/3		1	0,5004	O 5283		0.5568	0.5794		0.6002
	R2/3		0.4496	0,4756	0,4769	0.4781	men de los Rhi	(E)	J	0.354	380))	0.4155	0.4411		0.4650
	Ph3	Ε	0,3015	0.328	0.3293	0.3306		(m ²)	3111	9026	D360	}	1.1813	.3079		.4291
	A G	ΝĒ	0.6988	0,8006	0,8059	0.8111	Tabla 5.9. A <u>i</u>		_	ō	_	•	•			-
	y3/D		0.2	0.22	0.221	0.222	ķ	(H)	0.555	0.60	0.66	;	0,725	0.78		0.832
	, ×	E	G.0	0.55	0.5525	0,555	v _s / D		0.222	0.24	0.264	 - - -	0.29	0.312		0.3328

tro del túnel en el problema 5,5

$$\frac{AR_{h}^{2/3}}{b^{8/3}} = \frac{Qn}{b^{8/3}s^{1/2}} = \frac{112.5 \times 0.025}{15^{8/3} \times 0.0009^{1/2}} = 0.0685$$

Para canales rectangulares, de la fig 2.7 se obtiene y/b = 0.232, por lo tanto, el tirante normal vale

$$y_n = 0.232 \times 15 = 3.48 \text{ m}$$

que es menor que el conjugado mayor que se formaría con el salto al pié del cimacio, por lo cual efectivamente se moverá hatia aguas abajo (fig 4.22). El salto se producirá en la sección en que se oresente un tirante conjugado mayor igual al normal, esto es, $y_2 = y_n$. La velocidad, carga de velocidad, energía --específica y número de Froude en esta sección valen:

$$V_2 = \frac{7.5}{3.48} = 2.155 \text{ m/seg}$$

$$\frac{V_2^2}{2g} = \frac{2.155^2}{19.6} = 0.237 \text{ m}; E_2 = 3.48 + 0.237 = 3.717m}$$

$$F_{r_2} = \frac{V_2}{\sqrt{g \ y_2}} = \frac{2.155}{9.8 \times 3.48} = 0.369$$

Aplicando la ec.(4.8) el tirante conjugado menor vale:

$$y_1 = \frac{3.48}{2}$$
 ($\sqrt{1 + 8 \times 0.369^2}$ - 1) = 0.775 m

Siendo la velocidad, carga de velocidad, energía específica y número de Froude respectivamente:

$$V_1 = \frac{7.5}{0.775} = 9.675$$
 m/seg

$$\frac{V_1^2}{2q} = \frac{9.675^2}{19.6} = 4.778 \text{ m}$$

$$E_1 = 0.775 + 4.778 = 5.553 m$$

$$F_{\mathbf{r}_1} = \frac{9.675}{9.8 \times 0.775} = 3.51$$

De la tabla 4.1, resulta que $L/y_2 = 5.55$ por lo cual, la longitud del salto vale:

$$L = 5.55 \times 3.48 = 19.31 \text{ m}$$

La pérdida de energía en el salto es:

$$h = 5.553 - 3.717 = 1.836 m$$

Será necesario calcular la distancia que separa lassección al pie del cimacio, de tirante y = 0.723 m (problema 4.1), y aquélla correspondiente al conjugado menor. En el problema 4.1 se obtuvo que la energía al pié del cimacio es E = 6.213 m sien do la velocidad V_0 = 10.373 m/seg y el radio hidráulico

$$R_{h_0} = \frac{1.5 \times 0.723}{15 + 2 \times 0.723} = 0.659 \text{ m}$$

La pendiente de fricción en esta sección, para un -- factor de fricción n=0.015 en la zona revestida de concreto, -- sería:

$$\mathbf{S}_{\mathbf{f}_0} = \left(\frac{10.373 \times 0.015}{0.659^{2/3}}\right)^2 = 0.04218$$

De manera análoga, para la sección de conjugado menor se tendría

$$R_{h_1} = \frac{15 \times 0.775}{15 + 2 \times 0.775} = 0.702 \text{ m}$$

$$S_{f_1} = \left(\frac{9.675 \times 0.015}{0.702^{2/3}}\right)^2 = 0.03373$$

siendo la pendiente media

$$S_{f} = \frac{0.04218 + 0.03373}{2} = 0.03795$$

mplicando la ec(5.35b), la distancia entre las dos secciones (para $S_0 = 0$ en la zona revestida) será:

$$\Delta x = \frac{5.553 - 6.213}{-0.03795} = 17.39 \text{ m}.$$

En la fig 5.22 se presenta un esquema del perfil - del flujo resultante. Obsérvese que aun cuando el cambio de pendiente en el canal fué pequeño, hay un movimiento apreciable - del salto hacia aguas abajo.

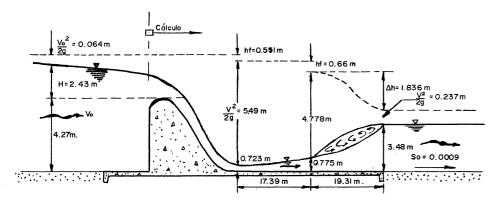


Fig 5.22. Flujo en la estructura del problema 5.6

5.6.2 Método gráfico

Sánchez B. (ref) 17) propuso un procedimiento gráfico de solución de la ec (5.35a), para el caso de especificar la longitud de los tramos y calcular los tirantes y que se describe a continuación. Sustituyendo la ecs (5.37 ayb) y (5.36) en la (5.35 a) resulta:

$$E_1 - S_{f_1} \frac{\Delta x}{2} + S_0 \Delta x = E_2 + S_{f_2} \frac{\Delta x}{2}$$
 (5.38)

Suponiendo que el tipo de perfil de flujo implica que el cálculo se realiza hacia aguas abajo, se tendrán conocidas las condiciones en la sección l (aguas arriba) y desconocidas en la sección 2 (aguas abajo).

Conocida la sección del canal y el gasto para el cual se va a obtener el perfil de flujo, se puede calcular - la curva energía específica-tirante (E-y), asignando a éstevalores entre los que variarán los tirantes del perfil por-calcular (por ejemplo, para un perfil S2, entre el crítico-y y el normal y_n ; esto es, la curva E-y corresponderá a larama en régimen supercrítico.

Dichos valores se elegirán con diferencias entre si tan pequeñas como requiera la precisión con que se desea-obtener la curva. Así mismo, se escoge la longitud Δx del -tramo, acorde con la precisión deseada; dicha longitud perma necerá constante en el cálculo de tal manera que la pérdidade fricción para la mitad del tramo tendrá el valor:

$$S_{f} = \left(\frac{v_{n}}{R_{h}^{2/3}}\right)^{2} = \left(\frac{\Delta x}{2}\right)$$
 (5.39)

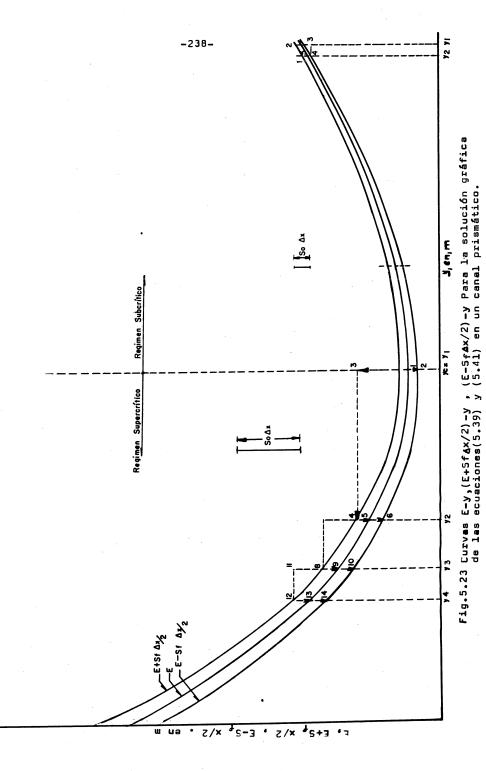
donde n es el factor de fricción (de Manning) en el canal, V y Rh son la velocidad y el radio hidráulico de la sección, que corresponden a cada uno de los tirantes elegidos. Esto-es, para cada valor del tirante "y" se calculará la energía específica E y la pérdida de energía Sf $\Delta \times /2$ y de aquí los -valores E + Sf $\Delta \times /2$ y E - Sf $\Delta \times /2$. Así mismo, con estos resultados se dibujan sobre un plano coordenado las curvas -- E - y, E + Sf $\Delta \times /2$ - y y t - Sf $\Delta \times /2$ - y, como se muestran la fig 5.23. Conviene elegir al eje horizontal como eje-de tirantes y"y el vertical para la energía específica E y-las funciones E + Sf $\Delta \times /2$ y E - Sf $\Delta \times /2$.

En el caso del perfil S2,el tirante inicial en el cálculo es el crítico y su posición está representada por el punto l de la fig 5.23. Dicho tirante corresponde a las-condiciones en la sección designada con el número l (tirante y1 y energía específica E_1). Para el mismo tirante, la orde nada del punto 2 corresponde al valor E_1 - S_{f_1} $\Delta \times /2$.

Ascendiendo sobre la misma vertical una distancia $S_0\Delta x$ (a la misma escala del eje vertical) a partir--- del punto 2, se llega al punto 3 cuya ordenada, de acuerdo -- con la ec (5.38), corresponde al valor $E_2+S_{f_2}\Delta x/2$. Esto-es, al desplazarse sobre una horizontal a partir del punto 3

hasta la intersección con la curva $E_2+S_{f_2}$ $\Delta x/2$ se llega – al punto 4, cuya abscisa es el tirante y_2 correspondiente a-la sección a una distancia Δx hacia aguas abajo. Las ordena das de los puntos 5 y 6 proporcionan los valores de E_2 y – y $E_2-S_{f_2}$ $\Delta x/2$ de esa sección.

cesario para encontrar los tirantes en secciones sucesivas,—siempre separadas la distancia Δx . Si en el canal existe la longitud necesaria para que llegue a establecerse flujo uniforme, la reiteración del procedimiento permitirá llegar a unasección, para la cual, el punto que se obtiene al ascender sobre la vertical la distancia $S_0\,\Delta x$ (a partir del que se encuentra en la curva $E-S_f\,\Delta x/2$), queda directamente sobre la curva $E+S_f\,\Delta x/2$. Esto significará que en esa sección seha establecido la igualdad $S_0\,\Delta x=S_f\,\Delta x$ (esto es, $S_0=S_f$) condición necesaria para que exista flujo uniforme.


El procedimiento puede generalizarse para cualquier tipo de perfil haciendo que se satisfaga la ec (5.38). Por ejemplo, si el perfil por calcular es del tipo Ml, la rama de la curva E-y corresponderá a la de régimen subcritico. En este caso, el cálculo será hacia aguas arriba a partir de un tirante inicial y_1 y convendrá escribir la ec (5.38)-como sigue:

$$E_1 - S_{f_1} \frac{\Delta x}{2} = E_2 + S_{f_2} \frac{\Delta x}{2} - S_0 \Delta x$$
 (5.40)

en la cual se han intercambiado los subíndices l y 2 con el-objeto de que la sección 2 sea la de aguas arriba y la 2 la de aquas abajo.

En la fig 5.23 el punto l sobre la rama de la ---curva E - y correspondiente a régimen subcrítico indicará - las condiciones en la sección inicial. La ordenada del punto-2 será igual a E1 + $5f_1\Delta \times /2$ y descendiendo la distancia -- $5_0\Delta \times$ sobre una vertical a partir de dicho punto, se llega al 3 cuya ordenada, de acuerdo con la ec (5.40), es igual a -- E2 - $5f_2\Delta \times /2$. Por lo tanto, al desplazarse sobre la horizon tal que pasa por el punto 3 se llega al 4 y, a partir de éste y sobre una vertical, al 5 cuyas coordenadas indicarán las -- condiciones de tirante y energía específica en la sección 2, a la distancia $\Delta \times$ hacia aquas arriba de la l.

El procedimiento se reitera las veces que sea ne cesario para encontrar los tirantes en secciones sucesivas—hasta llegar a la sección en que se establezca el flujo uniforme.

Es necesario observar en los ejemolos antes explicados que, para una misma sección del canal, la pendiente deplantilla S_0 necesaria para que exista un perfil S_0 tiene que ser obviamente mayor que la necesaria para que exista un perfil Ml, de ahí que las distancias $S_0\Delta x$ usadas en los ejemplos sean distintos.

Problema 5.7. El terraplén de una autopista tiene un ancho de 60 m y corre paralelo a un gran río, protegien do de inundaciones a las tierras agricolas que se encuentranen porciones bajas al lado opuesto del río. Debido a una avenida excepcional, el nivel del río se levanta 0.60 m por arriba de la carretera (fig 5.24). Estimar el gasto (por metro de ancho del terraplen) que se descargaría al área de tierras bajas. El perfil de la superficie transversal de la carreterase puede considerar horizontal con un valor medio del factorde fricción de Manning $\,n=0.04\,$

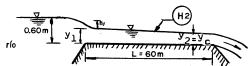


Fig 5.24. Sección transversal del terraplén del problema 5.7

Solución. El perfil es claramente del tipo H_2 . A la entrada, el tirante se reduce por la conversión de energía potencial a energía cinética (carga de velocidad), mientrasque a la salida el tirante es el crítico (fig 5.25).

Para determinar el perfil sería necesario conocer previamente el gasto q que es justamente la incógnita del problema. Sin embargo, es factible plantear la solución porque no procedimiento de aproximaciones. Se podría tener una ideadel orden del gasto, aplicando los resultados del problema --l.3 para un vertedor de cresta ancha, o bien a partir de lasfórmulas para este tipo de vertedores que se presentan al final del capítulo 7 del vol. I. Siguiendo los resultados delproblema 1.3 el gasto por unidad de ancho sería

$$q = 1.48 \times 0.6^{3/2} = 0.688 \text{ m}^3/\text{seg}.$$

para el cual, el tirante crítico valdría:

$$y_c = \sqrt{\frac{(0.688)^{3/2}}{9.8}} = 0.388 \text{ m}$$

Debido a los efectos de fricción, el gasto real -- sería menor por lo que se propone usar la ec (7.39) del Vol I, en la que, para $w/y_c > 3.5$ $\lambda_e = 0.33$ y, además, puesto que-- al disminuir el gasto: $y_c < 0.388$ m, se escogerá $y_c = 0.29$, - por tanto $n = \frac{60}{0.29} = 207$

Por lo tanto, utilizando dicha ecuación resulta:

$$C = \frac{\left[1 + 0.26 (0.33)^{2}\right] 9.8}{\left(\frac{3}{2} + 0.165 + 0.004 \times 207\right)^{3/2}} = 0.8178$$

y de la ec 7.6 del Vol I

$$q = 0.8178 \times 1 \times (0.6)^{3/2} = 0.38 \text{ m}^3/\text{seg}$$

Para este gasto, el tirante crítico será

$$y_c = \sqrt[3]{\frac{(0.38)^2}{9.8}} = 0.245 \text{ m}$$

que corresponde aproximadamente al escogido para valuar n. -- se utilizará entonces $q=0.38\,$ m $^3/seg$ en el proceso de tanteos.

th la tabla 5.10 se presentan los cálculos para - obtener las curvas E - y y (E \pm h_f/2) - y con tirantes-mayores de 0.245 m. Dichos cálculos no requieren más explicación. La fig 5.26 presenta dichas curvas donde se obtienen -- los tirantes a cada 10 m; aquí se ha considerado que $\Delta z = 0$ dado que el terraplén es horizontal. El tirante a la entradaresultó ser y_1 = 0.578 m con una energía específica E=0.60m, esto es, para una pérdida a la entrada h_1 = 0, resulta - - h = 0.60 m que es la carga dada (fig 5.25).

Por lo tanto, el valor propuesto para el gasto — es correcto si no hubiese resultado la carga propuesta —— (h=0.60~m) tendrían que repetirse los cálculos para otrogasto q distinto hasta que esto ocurriera.

Problema 5.8. Una alcantarilla de concreto reforzado tiene un diámetro de 1.524 m y una longitud de 90 m. Se desea construir con una pendiente de 0.02 para descargarlibremente. Calcular el perfil del flujo a lo largo de la --alcantarilla, para un gasto de 4.5 m³/seg con un factor de -fricción de Manning n = 0.014 y \propto = 1.0.

Solución. A partir de los datos, se calcula eltirante crítico determinando el parámetro

Tabla 5.10 Cálculo de las curvas (E + $h_f/2$) - y , (E - $h_f/2$) - y del problema 5.7 para q = 0.38 $m^3/{\rm seg}$. y Δx = 10 m.

. y	R _h	R <mark>2/3</mark>	V	v ² /2g	E	h _f /2	E + $\frac{h_f}{2}$	E - ^h f
0.245	0.245	0.3915	1.551	0.1227	0.3677	0.1255	0.4932	0.2422
0.27	0.27	0.4177	1.4074	0.1011	0.3711	0.0908	0.4619	0.2803
0.30	0,.30	0.4481	1.2667	0.0819	0.3819	0.0639	0.4458	0.3180
0.35	0.35	0.4966	1.0857	0.0601	0.4101	0.0382	0.4483	0.3719
0.40	0.40	0.5429	0.9500	0.0460	0.446	0.0245	0.4705	0.4215
0.45	0.45	0.5872	O.84 4 4	0.0364	0.4864	0.0165	0.5029	0.4699
0.50	0.50	0.6270	0.7600	0.0295	0.5295	0.0118	0.5413	0.5177
0.55	0.55	0.6713	0.6909	0.0244	0.5744	0.0085	0.5829	0.5659
0.60	0.60	0.7114	0.6333	0.0205	0.6205	0.0063	0.6268	0.6142

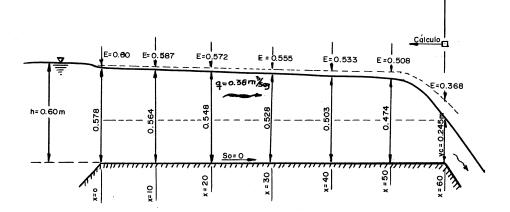


Fig. 5.25 Perfil de flujo sobre el terraplén del problema 5.7

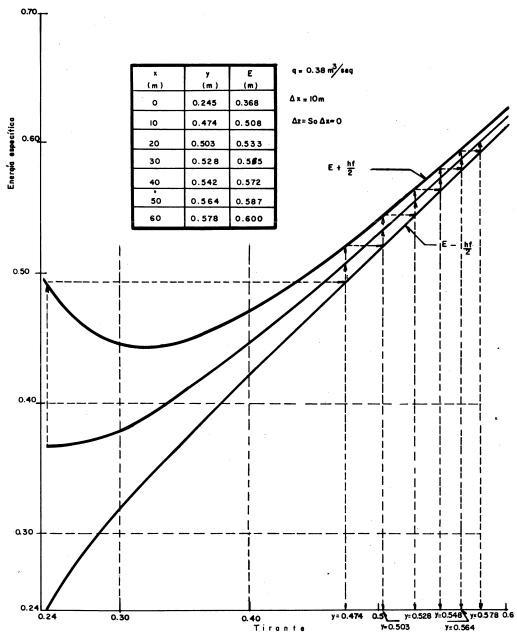


FIG 5.26 CURVA DE ENERGIA ESPECIFICA - TIRANTE DEL PROS'EMA 5.7

Tabla 5.11 Cálculo de las curvas (E + h_f/2) - y , (E - $\frac{h_f}{2}$) - y del problema 5.8 para Q = 4.5 m³/seg. y Δx = 15 m

 $R_h = R_h^{2/3} = V = V^{2/2g} = R_h = \frac{h_f}{2} = \frac{h_f}{2} = \frac{h_f}{2}$ 0.7236 1.1028 1.4135 0.4554 0.5919 3.1836 0.5171 1.6199 0.0425 1.6624 1.5774 1.0668 1.3638 0.4514 0.5884 3.2996 0.5555 1.6223 0.0462 1.6685 1.5761 0.9906 1.2551 0.4391 0.5777 3.5854 0.6559 1.6465 0.0596 1.7061 1.5869 0.65 1.6338 0.600.9144 1.1427 0.4231 0.5636 3.9380 0.7912 1.7056 0.0718 1.7774 0.56 0.8534 1.0512 0.4078 0.5499 4.2808 0.9350 1.7884 0.0891 1.8775 1.6993 1.7729 0.8077 0.9818 0.3949 0.5383 4.5834 1.0718 1.8795 0.1066 0.53 1.9861 0.7772 0.9363 0.3857 0.5299 4.8113 1.1811 1.9583 0.1212 2.0795 1.8371 0.7468 0.8888 0.3760 0.5209 5.0627 1.3077 2.0545 0.1389 2.1934 1.9156 0.4792 0.7303 0.8638 0.3705 0.5159 5.2095 1.3846 2.1149 0.1499 2.2648 1.965

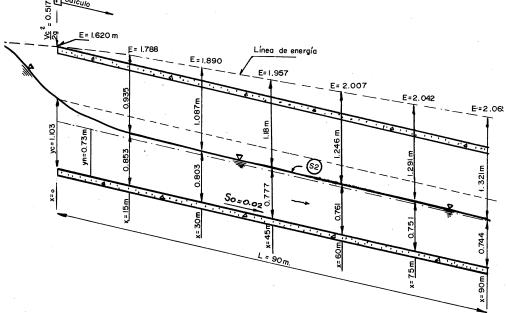


Fig 5.27 Perfil del flujo en la alcantarilla del problema 5.8

$$\frac{2\sqrt{9}}{n^{2\sqrt{5}}\sqrt{9/2}} = \frac{1 \times 4.5}{1.524^{2.5}/9.8/1} = 0.5013$$

De la tabla 2.5% $y_c/D = 0.7236$ y por lo tanto: $y_c = 1.1028$ m.

Para calcular el tirante normal, se determina el parámetro:

$$\frac{nQ}{D^{8/3}\sqrt{S_0}} = \frac{A R_h^{2/3}}{D^{8/3}} = \frac{Q \cdot D14 \times 4 \cdot 5}{1.524^{8/3}\sqrt{Q \cdot D2}} = 0.1448$$

De la tabla 2.5, $y_n/D = 0.4792$ y por lo tanto: -- $y_n = 0.7303$ m.

Debido a que y > y , la pendiente del canal es pronunciada resultando un perfil tipo S2. Como se muestra en la fig 5.27, la sección de control se localiza a la entrada de la alcantari—lla. El agua entrará a la alcantarilla con el tirante crítico y después escurrirá a un tirante menor que y $_{\rm c}$ pero mayor que-y $_{\rm p}$ $^{\circ}$

En la tabla 5.11 se muestran los cálculos para — determinar las coordenadas de las curvas y que se explicam — por si mismos. En la fig 5.28 se presentan las curvas E — y y (E \pm h /2) — y para la determinación del tirante en las diferentes estaciones. El perfil calculado se muestra en la fig — 5.27. Se presenta también la línea de energía que muestra lavariación de la misma a lo largo de la alcantarilla. El cálculo se ha llevado hasta exceder la longitud de la alcantarilla, de tal manera que se pueda interpolar el tirante en la sección final. Este tirante resultó ser de 0.744 m y la carga de velo cidad correspondiente es de 1.321 m. Para que en la alcantarilla se estableciera el tirante normal, su longitud tendría — que ser de 165 m.

Problema 5.9. Con referencia al canal del problema 4.3 (vean se también problemas 5.3 y 5.4), en el tramo intermedio (No.2) se mantiene la pendiente, que resultó: $S_0=0.17591$, para que se presente el salto hidráulico al pié de dicho tramo (fig. - 5.29). Sin embargo, por razones topográficas, es necesario limitar la longitud del tramo 3 a 933.66 m debido a que se requiere cambiar nuevamente de pendiente a $S_0 \times S_{c-4}$) Determinarla longitud x_2 necesaria en el tramo 2 para que se establezca flujo uniforme y limitar dicho tramo a esa longitud. b) Determinar el efecto de la limitación impuesta a la longitud del tramo 3 y localizar la nueva posición del salto hidráulico.c) Definir las longitudes x_3, x_4 de la zona que deberá revestir se en el tramo 3, de acuerdo con las condiciones impuestas en el problema 5.3.

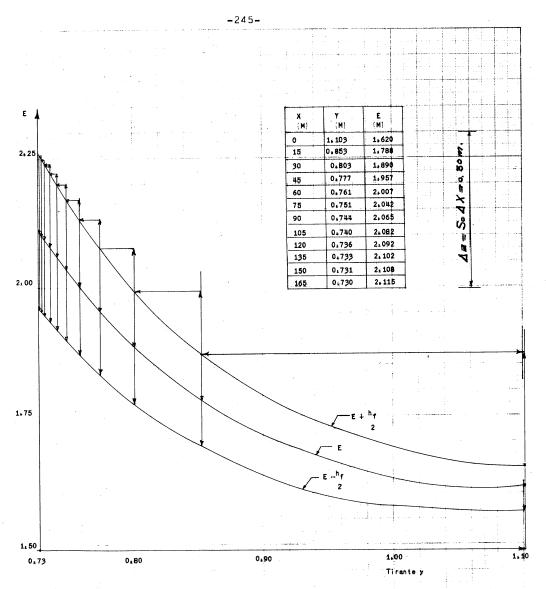


Fig.5.28 Curvas de Energía Específica - firante(x=15m) para el problema 5.8

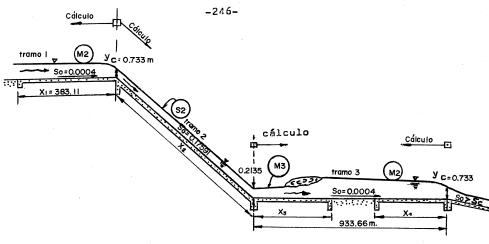


Fig 5.29 Esquema del canal en el problema 5.9

Solución a. En el problema 4.3 se calculó un gasto de 10.5953 m $^3/$ seg y un tirante crítico y $_{\rm C}$ = 0.733 m; para S $_{\rm O}$ = 0.17591 en el tramo 2, también resultó un tirante normal y $_{\rm D}$ = 0.2135.

El perfil de flujo en el tramo 2 es del tipo S_2 ypara calcularlo se utilizará el método gráfico. El tirante variará entre el crítico y el normal. En la tabla 5.12 se presentan los cálculos de las coordenadas de las curvas E-y y en lafig 5.30 se presentan las mismas así como el cálculo del tirante en las diferentes estaciones. Las distancias x corresponden a las medidas desde la sección crítica en el inicio del --tramo 2 hacia aguas abajo. La longitud x2 resultó ser de 90 m. Al final del tramo 2 se tendrá entonces el tirante normal ----y = 0.2135 m correspondiente a la pendiente S_0 = 0.17591, siendo el desnivel entre los dos extremos de dicho tramo:

$$\Delta z = 0.17591 \times 90 = 15.832 \text{ m}$$

Solución b De acuerdo con los resultados del problema 4.3, el salto se presentará al inicio del tramo 3 si existe un tirante conjugado mayor de 1.75 m. Sin embargo, la longitud impuesta a dicho tramo seguramente disminuirá dicho tirante y forzará a que el salto "se corra" hacia aguas abajo formando un perfil - M3. Para proceder a su localización será necesario recordar que en el problema 5.3 se encontró que el perfil de flujo en dicho tramo es del tipo M2 y que en el problema 5.7 se calculó una longitud de 383.11 m de dicho perfil llegando a un tirante de 1.149 m. Será necesario continuar con dicho cálculo hasta completar los 933.66 m que tiene de longitud el tramo 3, con el fin de conocer qué tirante se presentaría al iniciar el ---

Tabla 5.12. Cálculo de las curvas

Ax = 15 m (n = 0.015) V Å2g E 2.5213 0.3243 1.0573 2.6555 0.3598 1.0573 2.8850 0.4247 1.0747 3.1534 0.5073 1.1073 3.8528 0.7574 1.2574 4.32c2 0.9522 1.4022 4.8160 1.1834 1.5834 5.6584 1.6335 1.9835
0 v 2.5213 2.6555 2.8650 3.1534 3.4710 3.8528 4.32 c 4.32 c 6.6584 6.6637
of the state of th
2/3 Rh 0.7067 0.6888 0.6607 0.6314 0.6008 0.5586 0.5347 0.51406
Rh 0.5941 0.5716 0.5370 0.5017 0.4656 0.4287 0.3588 0.3126
P. 7.0732 6.9789 6.8385 6.6971 6.5556 6.1142 6.2728 6.1314 5.9899 5.8485
A 4 1.2023 3.99 3.6725 3.3600 3.0525 2.7500 2.1525 2.2000 1.5900
0.733 0.733 0.700 0.65 0.660 0.55 0.45 0.40 0.35

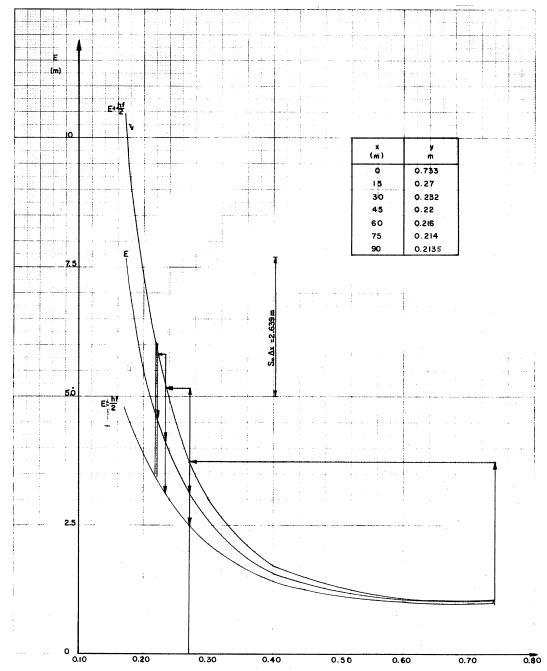


Fig.5.30 Eurvas de energía específice-Tirante del problema 5.9

tramo y compararlo contra los conjugados mayores del perfil M3, de acuerdo con el procedimiento indicado en el subcapítulo 5.4 (fig 5.8a). De la tabla 5.13 se observa que al inicio del tramo 3 el tirante del perfil es del orden de 1.512 m menor que el que se necesita para producir el salto hidráulico, por lo que es probable se produzca hacia aguas abajo. Para localizarel salto hidráulico será necesario calcular el perfil de flujo M3 (para n = 0.015) que principia al iniciar el tramo 3 y quecorresponde a la curva AG de la fig 5.8a. Así mismo, mediantela ec. 4.9 y con la ayuda de la fig 4.9, para cada uno de lostirantes de dicho perfil será necesario calcular los conjugados mayores para determinar la curva A'B de la fig 5.8a. Los resultados se presentan en la tabla 5.14 donde también se indican las longitudes del salto correspondientes, calculados de la fórmula de sieñchin: L = 10.6 ($y_2 - y_1$).

En la fig 5.31 se presentan los perfiles de flujocalculados en las tablas 5.13 y 5.14. μ e esta figura se deduce que a una distancia de 17.09 m desde el inicio del tramo 3 sepresenta un tirante de 0.28 m en el perfil M3. Para dicho tirante existe un conjugado mayor de 1.503 m con una longitud de

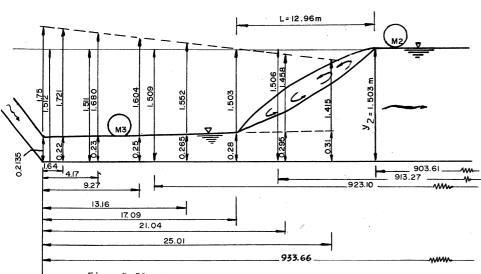


Fig. 5.31. Localización del salto hidráulico en el tramo 3 del problema 5.9

cálculos indicados en la tabla 5.7 (fig 5.19), debiendo recordar se de revestimiento por lo que tuvo que usarse n=0.025. La tabla 5.13 muestra la continuación de que el tramo aguas arriba

x E	383.11	456.75	507.94	572,35	653,83	757.99	863,65	894.12	903.61	913.27	923.10	929.75	933,11
× Δ (m)	32.91	51.19	64.41	81.48	104.16	105,66	30,47	9.49	99.6	9.83	6.65	3.36	
S J	0.0016852	0.0013912	0,0010606	0.0009327	0.0008237	0,0007385	0.0006954	0.0006849	0.0006802	0.0006755	0.0006716	0.0006692	,
Sf _i	0.0017289	0.0012935	0.0011298	0.0009914	0,0008739	0.0007736	0,0007035	0.0006873	0,0006825	0.0006778	0.0006731	0,0006700	0,0006685
E,	1.2637	1.3438	1.3854	1,4273	1.4713	1.5155	1.5513	1.5603	1.5630	1.5657	1.5684	1.5702	1.5711
$V_{\rm i}^2/2g$	0.1147	0.0938	0.0854	0.0779	0.0713	0.0655	0.0613	0.0603	0.090	0.0597	0,0594	0,0592	0.0591
V <u>i</u> (m/seg)	1.4996	1.3562	1.2937	1.2360	1.1825	1.1329	1.0957	1.0867	1.0840	1.0814	1.0787	1.0770	1.0761
Ph ₁	0.9018	0,9427	0.9622	0.9813	1.0000	1.0183	1.0327	1.0363	1.0323	1.0384	1.0395	1.0402	1.0405
Rh ₁	0.8863	0.9153	0.9439	0.9721	1.0000	1.0276	1.0495	1.0549	1.0565	1.0581	1.0598	1.0609	1.0614
P _i	8.2499	8,5355	8,6770	8.8184	8 . 9 5 98	9.1012	9.2144	9.2426	9.2511	9.2596	9.2681	9.2738	9.2766
A i	7.0652	7,8125	8.1900	8.5725	8,9600	9,3525	9.6701	9,7500	9,7740	9,7980	9.8221	9.8381	9.8461 9.2766
У ₁ ;	1.149	1.25	1.30	1.35	1.40	1.45	1.49	1.50	1.503	1.506	1.509	1.511	1.512

Tabla 5.11. Cálculo de tirantes-distancias para el perfil de flujo así como los conjugados mayores correspondientes

Уi	A	P_{i}	$^{ m R}\!_{ m h_i}$	$R_{\mathbf{h_i}}^{2/3}$	$\mathtt{v}_\mathtt{i}$	$\nabla_{\mathbf{i}}^2/2g$.	$^{\mathrm{E}}$ i	$^{\mathtt{S}}\mathtt{f_{i}}$	$^{\mathtt{S}}\mathbf{f}$
(m)	(m ²)	(m)	(m)		(m/seg)	(m)	(m)	_	
0.2135	1.1131	5,6039	0.1986	0.3404	9.5189	4.6229	4.8364	0.17591	0.16756
0.22	1.1484	5.6223	0.2043	0.3468	9.2261	4.3 և29	4.5629	0.15921	0.10/50
0.23	1.2029	5.6505	0.2129	0.3565	8.8081	3.9583	4.1883	0.13733	0.12070
0.25	1.3125	5.7071	0.2300	0.3754	8.0726	3.3248	3.5748	0.10406	0.12070
0.265	1.3952	5.7495	0.2427	0.3891	7 .5 940	2.9423	3.2073	0.08572	
0.28	1.4784	5 .7 92 0	0.2553	0.4024	7.1667	2.6205	2.9005	0.07137	0.07855
0.295	1.5620	5 . 8344	0.2677	0.4154	6.7831	2.3474	2.6424	0.05999	
0.31	1.6461	5.8768	0.2801	0.4281	6 . 4366	2.1138	2.1.238	0.05086	0.05543

Tabla 5.15. Cálculo de los tirantes V₂ y V₁ en el problema 5.10

V₂ A₂ P₂ Rh₂ V₂ V₂/2g H₂ Sf₂ S_f h_f
(m) (m) (m) (m/seg) (m) (m) — — (m)

1.89 27.3886 22.1754 1.2351 1.0953 0.0612 2.8512 0.0011091 0.0016913 0.1691

1.908 27.7808 22.2850 1.2466 1.0799 0.0595 2.8675 0.0010647 0.0016691 0.1669

1.87 26.9550 22.0532 1.2223 1.1130 0.0632 3.0832 0.0011611 0.0011129 0.1113

1.77 24.8220 21.4330 1.1581 1.266 0.0745 2.9945 0.0014713 0.001268 0.1268

M3 del tramo 3 en el problema 5.9 (n = 0.015)

12.96 m. Esto es, el salto terminaría a una distancia de 17.09+

12.96 = 30.05 m, de manera que dentro del perfil M2 debe existir un tirante de 1.503 m para que ocurra el salto. En efecto, si de la longitud total del tramo se resta la distancia 30.05m resulta:

$$933.66 - 30.05 = 903.61 m$$

y consultando la tabla 5.13 a esa distancia medida desde la -sección crítica al terminar el tramo 3 hacia aguas arriba se -presenta el tirante de 1.503.

<u>Solución c</u>. La longitud x_3 del revestimiento deberá ser entonces de 30.05 m y la longitud x_4 deberá ser igual a x_1 o sea de 383.11 m (vease problema 5.4).

5.7. Métodos de incrementos finitos en canales naturales.

5.7.1 Ríos de sección sencilla

Se consideran canales irregulares a los no prismáticos cuya sección cambia de un punto a otro a lo largo del --cauce. Dentro de estos quedan comprendidos los ríos naturales. En dichos canales, a menudo acontece que el agua rebasa los ni veles normales cuando ocurre una avenida que inunda regiones o bermas y modifica sustancialmente las velocidades medias y elvalor del coeficiente de Coriolis de una sección a otra. De esta manera, se forman dos sistemas paralelos de flujo que tienen que considerarse separadamente. Sin embargo, en esta sección - se considerarán solamente aquellos casos en que el agua quedacontenida dentro de un canal de sección sencilla formando un -único sistema de flujo.

Para el análisis de los problemas en canales irregulares es necesario hacer un levantamiento topográfico en elcampo para dividir el río en una serie de tramos cortos de tal modo proporcionados, que la forma de la sección y factores derugosidad sean aproximadamente uniformes en cada tramo. Un ---ejemplo de ello se muestra en la fig. 5.31. De esta manera, en

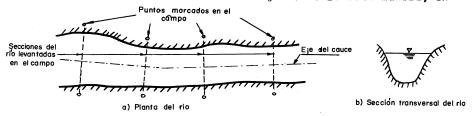


Fig 5.31 Esquema de las secciones transversales en un río natural levantados en el campo.

cualquier proceso de integración numérica es necesario trabajar a partir de valores elegidos para x y calcular el tirante de -acuerdo con ellos. Una razón práctica para esto es que las propiedades de un río se miden usualmente en las secciones fijas: Aun cuando se conociera con precisión la geometría del río encada sección a lo largo del cauce, la variación irregular de - las propiedades del canal con la distancia x haría aun más difícil calcular x a partir de un valor dado para el tirante y,- que calcular y de un valor dado para x.

De este modo, en la determinación de los perfilesde flujo en un río natural se debe calcular "y" a partir de "x" ypara ello usar un procedimiento de aproximaciones sucesivas. -En realidad el tirante y "rara vez aparece en los cálculos y en su lugar es preferible especificar la altura h del nivel del agua, medida desde un cierto plano de referencia.

En la fig 5.32 se muestran las condiciones hidráulicas en uno de los tramos de longitud Δx en que se ha dividido el río. Como el flujo es gradualmente variado, es razonable considerar recta la línea de energía dentro del tramo.

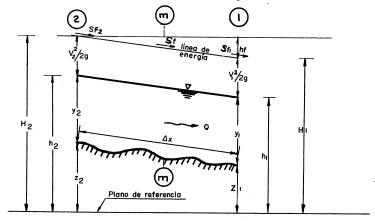


Fig 5.32 Tramo corto de un río.

De la ecuación de energía entre las dos secciones, resulta:

$$h_2 + \frac{v_2^2}{2g^2} = h_1 + \frac{v_1^2}{2g^2} + h_2 + h_e$$
 (5.41a)

$$H_2 = H_1 + h_f + h_e$$
 (5.41b)

donde h_e es la pérdida de fricción entre las dos secciones y que se calcula a partir de las ecs (5.36), (5.37)a) y --- (5.37b) y h_e es la pérdida por cambio de sección y remoli-nos que depende principalmente del cambio en carga de velocidad y suele ser muy pequeña, o bien puede quedar englobada dentro de la pérdida por fricción incrementando el factor de fricción. Se puede calcular mediante la siguiente ecuación:

$$h_{e} = k \frac{|v_{2} - v_{1}|^{2}}{2g}$$
 (5.42)

Existe poca información acerca del valor del --coeficiente k; sin embargo, es común considerar que vale de 0 ± 0.1 cuando disminuye el area de la sección de 2 ± 1 , y --vale 0.2 cuando aumenta. Para expansiones y contracciones --bruscas, k vale aproximadamente 0.5. En el caso de ríos encurva, se prefiere usar la ecuación siguiente:

$$h_e = 0.05 \left(\frac{V_1^2 + V_2^2}{2g} \right)$$
 (5.43)

De acuerdo con el sentido en que se efectúa elcálculo, para un determinado gasto se conocerán las caracte rísticas en alguna de las dos secciones la l si el cálculoses en el sentido del flujo o la 2 si es el contrario. En ambas secciones se debe disponer de curvas que permitan conocer n, P, R_h , etc para diferentes valores de h, así como el valor medio estimado para el factor de fricción n.

En la mayoría de los ríos el flujo es subcrítico y el tirante no es muy distinto del normal obtenido para
una pendiente media del fondo. Los perfiles hacia aguas --arriba son, por tanto, dictados por las condiciones de aguas
abajo. nor ello, es ventajoso, aunque no esencial, utilizar
una sección de control en el extremo aguas abajo del canal,
formada por un vertedor o unión con un gran río, con objeto
de que se conozca el nivel del agua para cualquier gasto. Si esto no es posible, se supone un nivel tentativo inicial
arriba del crítico en el extremo aguas abajo y se procedeal cálculo hacia aguas arriba. Al repetir el mismo procedimiento con varios niveles iniciales, se encuentra normalmen
te, que debido a la curvatura decreciente del perfil delflujo, se pierde rápidamente el efecto de pequeñas variacio
nes en el nivel tentativo de la sección inicial.

Si se conoce el nivel de la superficie del agua en la sección ly se desea determinarlo en la 2, se propone un valor tentativo h_2 y se calcula A2, V2, V2 $^2/2g$ y la ener gía total H2 = h_2 + V2 $^2/2g$. La pendiente de fricción S $_{f2}$ = (n V $_2/R_h^{2/3}$) 2 y se puede calcular el valor medio - -

(S_{f1} + S_{f2})/2 de donde se obtiene la diferencia de energías totales H_2 - H_1 y de aquí H_2 . La prueba del proceso deiteración es saber si corresponde al valor H_2 que se calculópreviamente, de lo contrario, se propone un nuevo valor de —tanteo.

Para ayudarse en este proceso de iteración, sepuede seguir el razonamiento siguiente: se desea igualar -los dos valores

$$H_2 = \mathbf{z}_2 + \mathbf{y}_2 + \mathbf{Q}_2 - \frac{\mathbf{v}_2^2}{2g}$$

$$H_2' = H_1 + \frac{1}{2} \Delta x (S_{f_1} + S_{f_2})$$

donde se ha despreciado la pérdida ha.

Llamando $H_E = H_2 - H_2'$ la diferencia entre losdos valores (esto es, elerror), se desea que esta cantidad-desaparezca cambiando el nivel de la superficie del agua; -- esto es, cambiando y_2 dado que obviamente no se puede modifiz. Nuestro problema es determinar la respuesta de H_E a pequeños cambios en y_2 y esta respuesta está medida por la derivada dH_E/dy_2 . Debido a que z_2 , H_1 y S_{f1} son constantes, entonces se tiene que:

$$\frac{d H_E}{dy_2} = \frac{d}{dy_1} \left(y_2 + \alpha_2 \frac{{v_2}^2}{2g} - \frac{1}{2} \Delta x S_{f_2} \right)$$

$$= 1 - \frac{\alpha_2 q^2 B_1}{gA_2^3} - \frac{1}{2} \Delta x \frac{d S_{f_2}}{dy_2}$$

Debido a que S_{f2} varía aproximadamente con el reciproco del cubo de \mathbf{y}_2 , se tiene:

$$\frac{d s_{f_2}}{d y_2} \approx - \frac{3 s_{f_2}}{y_2} \approx - \frac{3 s_{f_2}}{\kappa_{n_2}}$$

Obteniendo entonces:

$$\frac{d HE}{dy_2} = 1 - \frac{2 Q^2 B_2}{g A_2^3} + \frac{3 f_2 \Delta x}{2 Rh_2}$$

0 bien, con α_2 Q^2B_2/g $A_2^3 = \alpha_2 V_2^2$ L_2/g A_2 , se obtiene:

$$\Delta y_2 = \frac{\pm H_E}{1 \frac{\alpha_2 V_2^2 B_2}{g_{A_2} + \frac{3 S_{f_2} \Delta x}{2 R_{h_2}}}$$
 (5.44)

En esta ecuación Ay_2 es la cantidad que dene cambiarse el nivel del agua en la sección 2 con el fin deque disminuye el error H_E . Se utilizará el signo positivo si el régimen en el río es supercrítico y negativo si es—subcrítico ($H_E = H_2 - H_2^1$). Debido a que en un río natural el ancho B de la superfície libre se confunde con el perímetro mojado P, se pueden hacer las siguientes simplicaciones con el término que sigue:

$$\frac{\propto v^2_{B}}{g_A} \approx \frac{\sim v^2_{B}}{g_{R_h}} \approx \frac{\sim v^2/2g_{B}}{R_h/2}$$

Problema 5.10 . En la fig 5.33 se presenta elperfil longitudinal del cauce de un río, para el cual, enla sección 3 se aforó un gasto de 30 m3/seg y se midió untirante y $_3$ = 1.60 m . Se estima un factor de fricción de-Manning n = 0.035.

Para facilitar los cálculos se puede considerar que la sección transversal del río es de forma-parabólica, simétrica respecto del eje vertical, de tal maneraque en la sección 3 el ancho de la superficie libre es de-20 m. Calcular el tirante en las seciones 1 o 5 según seafactible, considerando que existe la misma distancia de --100 m entre las secciones indicadas en la fig. 5.33 y que-el coeficiente \propto = 1.

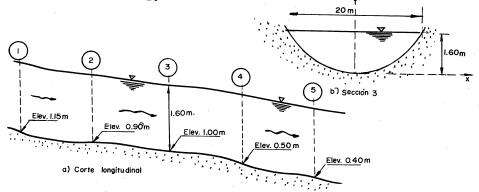


Fig. 5.33. Esquema aclaratorio del problema 5

Solución. Para conocer en qué dirección debe -- efectuarse el cálculo, es necesario determinar el tirante crítico y comparar con el medido en la sección 3.

De acuerdo con el sistema deejes indicado en la fig. 5.33 b, la sección parabólica tendrá una ecuación del tipo: y = a x^2 , de tal manera que sustituyendo los datos de la sección 3, resulta que: a = y/x^2 = 1.60/10² = 0.016 y la ecuación de la parábola es: y = 0.016 x^2 . De la tabla-2.1 del primer volúmen, el area hidráulica de la sección se calcula con la ecuación: A = 4 yx/3; o bien, siendo $x = \sqrt{y/0.016}$ = 7.9057 $y^{1/2}$, el area resulta ser:

$$A = \frac{4}{3} \times 7.9057 \text{ y}^{3/2} = 10.5409 \text{ y}^{3/2}$$

De la ecuación para el tirante crítico en secciones parabólicas (con c = 10.5409) resulta que:

$$y_{c} = \sqrt[4]{\frac{3 Q^{2}}{2g C^{2}}} = \sqrt[4]{\frac{3 \times 30^{2}}{2 \times 9.8 \times 10.5409^{2}}}$$
$$= 1.055 \text{ m} \quad 1.60 \text{ m}$$

Esto es, $y_c < y_3$ y aun cuando no es posible calcular un tirante normal dado que se trata de un canal no prismático, el cálculo deberá realizarse hacia aguas arriba de la sección 3, por lo cual será posible determinar el tirante y_1 · cl cálculo del tirante y_5 es imposible para las condiciones impuestas en el problema.

El perímetro mojado en la sección parabólica sepuede calcular con una aproximación satisfactoria a partir de la ecuación: P = 2 x + 4 y²/3 x cuando 0 < 2y/x \le 1 (ref 2). En la sección 3, 2 y/x = 2 x 1.60/10 =0.32 y por tanto, substituyendo "x" para la ecuación de la parábola de este problema, resulta: P = 2 x 7.9057 y¹/² + 4 y²/³ x 7.9057 y¹/², o sea:

$$P = 15.8114 y^{1/2} + 0.1687 y^{3/2}$$

El cálculo del tirante y_1 se hará por el método de incrementos finitos, pasando primero por la sección 2 y -- con la ec (5.41 a) en la que se desprecia h_e . Estableciendo dicha ecuación entre las secciones 2 y 3 resulta:

$$0.90 + y_2 + \frac{v_2^2}{2g} = 1.00 + 1.60 + \frac{v_3^2}{2g} + h_f$$

diendo el area de la sección 3:

$$A_3 = 10.5409 \times 1.60^{3/2} = 21.3333 \text{ m}^2$$

la velocidad y carga de velocidad en dicha sección valen:

$$V_3 = \frac{30}{21.3333} = 1.4063$$
 m/seg

$$\frac{\mathbf{v_3}^2}{2g} = 0.1009 \text{ m}$$

Por lo cual la ecuación de energía resulta:

$$0.90 + y_2 + \frac{{v_2}^2}{2g} = 2.7009 + h_f$$
 (a)

Por otra parte, el perímetro mojado y el radio midráulico en la sección 3 valen:

$$P_3 = 15.8114 \times 1.60^{1/2} + 0.1687 \times 1.60^{3/2}$$

= 20.3414 m

$$R_{h_3} = \frac{21.3333}{20.3414} = 1.0488 m$$

Por lo tanto, de la ec (5.37) la pendiente de fricción en la sección 3 vale

$$S_{f3} = \left(\frac{1.4063 \times 0.035}{1.0488^{2/3}}\right)^2 = 0.0022735$$

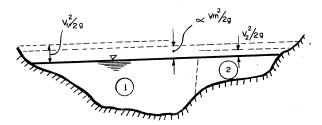
Para utilizar un procedimiento de aproximaciones sucesivas, se proponen diferentes tirantes en la sección 2 y se calculan los elementos geométricos e hidráulicon necesarios hasta lograr un tirante que satisfaga la ec (a). Los cálculos se resumen en la tabla 5.15, en la cual, la pendien te de fricción se ha calculado con las ecs (5.37) y los nive les de energía con la (a). Los incrementos Δy se han obtenido con la ec (5.44) utilizando el signo negativo.

resulta que el tirante y_2 = 1.908 m satisface la ec (a). De la misma manera se procede con la ecuación de energía entre las secciones 1 y 2

1.15 +
$$y_1$$
 + $\frac{v_1^2}{2g}$ = 0.90 + 1.908 + 0.0595 + h_f
1.15 + y_1 + $\frac{v_1^2}{2g}$ = 2.8675 + h_f (b)

siendo $S_{f_2} = 0.0010647$

En la misma tabla 5.15 se han continuado los cálculos para sa tisfacer la ec (b). El tirante $y_1=1.77\,\mathrm{m}$ resuelve el proble ma planteado. La presentación que se ha hecho de los cálculos puede ser, desde luego, mejor sistematizada e incluso ser resuelta con computadora electrónica. Aquí se ha tratado unicamente de que sea lo más clara posible


5.7.2 Ríos de sección compuesta

a) Solución general

En estos canales, la sección transversal se divide en regiones distintas que tienen características de flujodiferentes. El ejemplo mas común de esta situación ya se ha mencionado en la sección 2.8 y un ejemplo se muestra en la -fig. 5.34, el cual corresponde al caso de flujo que invade zo
nas laterales de la sección sobre las bermas, poseyendo tiran
tes diferentes y rugosidades distintas de los que se tienen en el cauce principal.

Si el canal es recto, el nivel de la superficie del agua permanecerá esencialmente constante sobre toda la -sección del flujo debido a que la presión hidrostática debe permanecer constante a lo largo de cualquier línea horizontal trazada a través de la sección. Sin embargo, en las distintas regiones de flujo mostradas en la fig 5.34 se tendrán velocidades y cargas de velocidad diferentes; el problema consistirá entonces en definir una carga total H aplicable a toda la sección transversal. La solución es usar el coeficiente de -energía imes como se definió en la sección 2.8. La línea de ene $\underline{\mathbf{r}}$ gía total se elevará a través de toda la superficie completadel agua una distancia ≪V_m²/2g por encima de ella, tal comose muestra en la fig 5.34. Esta línea de energía total y cua $\underline{ extbf{1}}$ quier pérdida de energía deducida de ella se suponen aplica-bles a toda la sección y también a cada una de las subseccio nes individuales.

La última suposición no es estrictamente verdadera debido a que las subsecciones separadas se considerarian-propiamente como sistemas paralelos, cada uno con pérdidas de energía, velocidad, tirante, etc. distintos. Sin embargo, sería extremadamente difícil tratar el problema en esta forma,-

rig 5.34 Ejemplo de sección compuesta y del uso de un coeficiente de velocidad para $\det \underline{i}$ nir una carga de velocidad media

ya que para ello se tendría que considerar el intercambio deflujo entre las bermas y el canal principal de una sección ala siguiente y, en general la distribución de flujo entre las bermas y el canal principal podría ser determinado sólo me-diante un proceso de aproximaciones sucesivas. De hecho, el tratamiento sería más difícil al garantizar los requerimien-tos de la ingeniería de ríos; la suposición de energía totaluniforme a través de cada sección da resultados que son bas-tante seguros y suficientes para propósitos prácticos.

En la sección 2.8 se ha encontrado que el coeficiente para - una sección compuesta está dade por la ec (2.38):

donde \propto_i , Ki,A; son: el coeficiente de energía, el factor de conducción y el area de cada subsección respectivamente. A es el area total de la sección.

Por otra parte, de la ec (2.37) la pendiente de - fricción vale:

$$S_{f} = \frac{Q^{2}}{(\sum_{i=1}^{n} K_{i})^{2}}$$

donde Q es el gasto total. De esta manera, los dos factores — $\propto_y S_f$, que son de importancia crítica en la tabulación, se — pueden calcular sin una evaluación explícita de los gastos — Q₁, Q₂, ..., etc. Los valores de Ki que deben considerarse en las dos ecuaciones anteriores se obtienen de la ec (2.32) o — de la (2.33a), según sea la fórmula de fricción que desee utilizarse.

De acuerdo con los desarrollos anteriores, la ec-(5.41a) se puede desarrollar para dos secciones 1 y 2 de la manera siquiente:

$$h_{2} + \frac{\sum_{i=1}^{n} (\alpha_{i} K_{i}^{3}/A_{i}^{2})}{2g (\sum_{i=1}^{n} K_{i})^{3}} Q^{2} = h_{1} + \frac{\sum_{i=1}^{n} (\alpha_{i} K_{i}^{3}/A_{i}^{2})}{2g (\sum_{i=1}^{n} K_{i})^{3}} Q^{2} + \frac{1}{2} \left[\frac{Q^{2}}{(\sum_{i=1}^{n} K_{i})_{1}^{2}} + \frac{Q^{2}}{(\sum_{i=1}^{n} K_{i})_{1}^{2}} \Delta x \right] \Delta x$$
 (5.45)

donde se ha sustituido: $V_1 = \sqrt{A_1}$ y $V_2 = Q/A_2$ y se ha considerado incluída la pérdida ha dentro de la defricción. Esta ecuación se puede también escribir como sigue

$$h_{2} + \frac{\sum_{i=1}^{n} (\propto_{i} \kappa_{i}^{3} / A_{i}^{2})}{2g \left(\sum_{i=1}^{n} \kappa_{i}\right)^{3}} - \frac{\Delta_{x}}{2\left(\sum_{i=1}^{n} \kappa_{i}\right)^{2}} = h_{1} + \frac{\sum_{i=1}^{n} (\sim'_{i} \kappa_{i}^{3} / A_{i}^{2})}{2g \left(\sum_{i=1}^{n} \kappa_{i}\right)^{3}} + \frac{\Delta_{x}}{2\left(\sum_{i=1}^{n} \kappa_{i}\right)^{2}} = 0$$

o bien:

$$h_2 + F_A(h_2) = h_1 + F_B(h_1)$$
 (5.46)

donde:

$$F_{A}(h_{2}) = \frac{\sum_{i=1}^{n} (\alpha_{i}K_{i}^{3}/A_{i}^{2})}{2g(\sum_{i=1}^{n}K_{i})^{3}} - \frac{\Delta Xd}{2(\sum_{i=1}^{n}K_{i})^{2}} Q^{2} (5.47)$$

$$F_{B}(h_{1}) = \frac{\sum_{i=1}^{n} (\alpha_{i}K_{i}^{3}/A_{i}^{2})}{2g(\sum_{i=1}^{n}K_{i})^{3}} + \frac{\Delta x_{u}}{2(\sum_{i=1}^{n}K_{i})^{2}} Q^{2} (5.48)$$

se observa que las funciones F_A (h) y F_B (h) dependen únicamente de la rugosidad, coeficientes de energía, de los elementos-

geométricos de la sección y del gasto, correspondiendo al nivel h que alcanzaría la superficie libre del agua en la sección.

La función $F_A(h)$ se aplica a la sección en el extremo aguas arriba de un cierto tramo y $F_B(h)$ a la que sencuentra en el extremo aguas abajo. Debido a que cada sección corresponde al extremo aguas abajo de un tramo o al de aguasarriba de la sección que sigue (en la dirección del flujo), - $F_A(h)$ y $F_B(h)$ deben ser calculadas para cada sección. Sin embargo, es más importante notar, que Δx no es igual paracada función en la misma sección. Por las razones expuestasantes, Δx_d en $F_A(h)$ es la longitud del tramo entre una sección y la que existe inmediatamente aguas abajo y Δx_u la — longitud del tramo entre la sección y la que existe inmediatamente aquas arriba.

Para facilitar los cálculos, es conveniente determinar las funciones $F_A(h)$ y $F_B(h)$ para diferentes valores dehadopt dos en cada sección y representarlos graficamente, --recordando que normalmente la distancia que separa las secciones es variable. De esta manera, para cada sección se obten-drán dos curvas distintas, una para cada función.

Por un procedimiento de aproximaciones sucesivas se forzará a satisfacer la eu (5.46) entre dos secciones con secutivas. Esto es, suponiendo conocido el nivel h_1 (en lasección l) y siendo la dirección del cálculo hacia aguas — arriba, de la curva $F_B(h)$ se obtendrá el valor de dicha función que se sumará a h_1 . Se supone un valor h_2 y de la curva $F_A(h)$ de la sección 2 se obtendrá el valor de $F_A(h_2)$, que se sumará a h_2 . Se deberá entonces verificar la ec (5.46) si el valor elegido para h_2 es el correcto; en caso contrario, sesupondrá otro valor de h_2 y se repetirá el cálculo.

Se observa que $F_A(h)$ y $F_B(h)$ dependen del cuadrado delgasto y que una vez valuados será posible utilizarlos para sobtener los perfiles de flujo en el río para gastos distintos; o bien, para un mismo gasto, obtener los diferentes perfiles de flujo para diferentes niveles h en la sección en que se inicia el cálculo.

b) Método gráfico de Ezra

Como en el caso de canales prismáticos, en el --tratamiento de canales irregulares es posible reemplazar el-proceuimiento de tanteos por un método gráfico. Este se basa en dibujar curvas de h + $F_A(h)$ y h + $F_B(h)$ contra h para --cada sección del río. Los dos tipos de curvas se presentan --en la fig 5.35 a vía de ejemplo. Considerando que el flujo--

es subcrítico (como sucede casi siempre en los ríos naturales), el cálculo se realizaría en dirección aguas arriba. Sin em--bargo, con el sistema de curvas se trabajaría exactamente en la misma forma si el flujo fuera supercrítico y el cálculo - se realizaría en dirección aguas abajo de la sección 2 a lasección l.

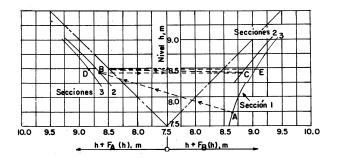


Fig 5.35. Operación con el método Ezra para la determinación de perfiles longitudi-

Las condiciones del flujo en la sección l (inicial) están representados por el punto A, en el diagrama — del lado derecho, sobre la curva F_B . Las condiciones en la sección 2(aguas arriba de la l) quedarán entonces representadas por el punto B sobre el diagrama F_{A} , teniendo la misma abscisa, 8.65 m, del punto A. De esta manera queda satisfecha la ec (5.46). Para ir de la sección 2 a la 3 (aguas arriba de la 2), se debe primero regresar al diagrama F_B mediante una línea horizontal hasta el punto C. Los puntos B y C representan a la sección 2, por lo cual deberán tener la misma ordenada h_2 . Para pasar de la función F_B a la F_A para la sección 3, se procede en la misma forma que antes. Del punto C se transfiere a D que representa la sección 3 y así sucesivamente.

<u>Problema 5.11.</u> Para prevenir las inundacionesdesde un río que atravieza una ciudad, se proyecta construir bordos laterales (talud 1:1) de tal manera que los gastos-de estiaje queden contenidos dentro del cauce central principal y que al ocurrir avenidas se inunden las porciones --

laterales limitadas por los bordos en las márqenes del río. Las inundaciones se deben a insuficiencia en la capacidad de la sección y al efecto de remanso que ocasiona el nivelque alcanza un río de mayores dimensiones (principal). al-cual confluye el primero (fiq 5.36 a). Se ha hecho un levan tamiento topográfico de las secciones transversales del río secundario en las estaciones marcadas en la fig 5.36a. Para simplificar la geometría de dichas secciones, se puede consi derar que la forma esquematizada en la fig 5.36b se adantaa la totalidad de las mismas variando exclusivamente las -distancias so y sa para cada una de ellas. La fig 5.36c --muestra la geometría del cauce principal. Se estimó que los factores de fricción de Manning son n = 0.025 para el cauce principal y 0.04 para las porciones laterales: siendo. además, $\propto = 1.15$ para el cauce principal v 1.10 para los laterales. A continuación se presentan la elevación del fondo del cauce principal y los anchos s_1 y s_2 para cada estación:

Sección	Esta ción (km)	Elev. fondo cauce princ.	s ₂ (m)	s ₃
1	2 + 950.00	247.57	57	70
2	2 + 676.00	247.77	52	67
3	2 + 327.00	248.27	50	65
4	2 + 035.00	248.47	48	64
5	1 + 757.00	248.84	46	64
6	1 + 428.00	249.14	45	63
7	1 + 162.00	249.37	42	62

rara una avenida en el río secundario de $300\,\mathrm{m}^3/\mathrm{seg}$, la avenida en el río principal eleva el nivel del agua en la-Est. 2+950.00 hasta la Elev. $255.22\,\mathrm{m}$. Calcular la elevación del nivel del agua en cada una de las secciones y la altura de la corona de bordos, considerando que el bordo libre es de --- $0.30\,\mathrm{m}$

Solución. Conviene calcular los elementos geométricos e hidráulicos de la sección en el cauce principal, indicada en la fig 5.36 c. El area del sector OLMN = $\Re r^2/4$ = 0.7854 r^2 , el area del triángulo OLN = 0.5 r^2 . Por lo tanto, el area del segmento LKNM: A_D = 0.2854 r^2 . Esto es,

$$A_{\Omega} = 0.2854 (14.2)^2 = 57.5477 m^2$$

El perímetro mojado resulta

$$P_1 = \frac{2 \, \text{ff r}}{4} = \frac{\text{ff x } 14.2}{2} = 22.3053 \, \text{m}$$

y el radio hidráulico vale

$$R_{h_1} = \frac{57.2}{22.2} = 2.58 \text{ m}$$

El ancho B_l de la superficie libre vale:

$$B_1 = 2 \text{ r} \cos 45^\circ = 2 \times 14.2 \times 0.7071 = 20.0818 \text{ m}$$

Finalmente, la profundidad KM es:

$$KM = r(1 - cos 45^{\circ}) = 14.2 (1 - 0.7071) = 4.1591 m$$

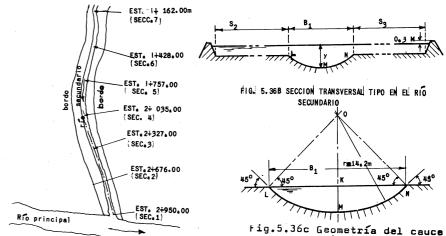


Fig.5.36a Planta del cauce del problema 5.11

Para conocer la dirección en que debe efectuarse el cálculo, es necesario determinar el tirante crítico en la sección lebido a que la sección es compuesta, debe aplicarse la ec (3.4b) incluyendo el valor de ∞ , o bien seguir ladefinición de que el tirante crítico es el que proporciona la energía específica minima y para ello, será necesario cal cular la curva E-y, utilizando las ecs (2.33 a) y (2.38) para valuar ∞ en toda la sección. Los cálculos seresumen en la tabla 5.16. En dicha tabla, A_1 corresponde alarea de la porción central, que vale:

$$A_1 = 57.5477 + (y - 4.1591) 20.0818$$

$$A_3 = 20.0818 y - 25.9745$$
 (a)

El area $\,{\rm A}_2\,$ corresponde a la lateral de ancho $\,{\rm s}_2\,$ y vale

$$A_2 = s_2 (y - 4.1591) + 0.5 (y-4.1591)^2$$
 (b)

En la sección 1 , $s_2 = 57$ m, por tanto la ec(b)

resulta:

$$A_2 = 57 (y - 4.1591) + 0.5 (y - 4.1591)^2$$

Así mismo, el area A_3 vale:

$$A_3 = s_3 (y - 4 1591) + 0.5 (y - 4.1591)^2 (c)$$

y en la sección 1, $s_3 = 70 \text{ m por lo tanto:}$

$$A_3 = 70 (y - 4.1591) + 0.5 (y - 4.1591)^2$$

De la tabla 5.16 se deduce que con $y_c=4.80~\text{m}$ se obviene la energía específica mínima: E = 5.3522 m. Se --puede tratar de verificar la ec (3.4b) para dicho tirante. - esto es:

$$\frac{\alpha_0^2}{q} = \frac{2.7865 (300)^2}{9.8} = 25590$$

$$\frac{A_c^3}{B_c} = \frac{(152.2232)^3}{148.3636} = 23774$$

existiendo un error del 7 porciento.

El tirante de la sección l vale

$$y_1 = 255.22 - 247.57 = 7.65 m$$

el cual es mayor que el crítico y el cálculo debe realizarse hacia aguas arriba de la sección 1, hacienuo que se verifique la ec (5.46). Para ello, será necesario calcular las funciones $F_A(h)$ y $F_B(h)$ para cada sección, a partiz de las ecs. (5.47) y (5.48), Para la sección la será necesario calcular tan sólola función $F_B(h_1)$ y en especial la que corresponde a h_1 = 255.22 m, para elevación en el fondo 247.57 m. En la tabla 5.17 se presenta el cálculo de dichas funciones para todas las secciones y en la fig 5.37 su representación gráfica.

398

ibla 5.16. Valores de E - y para la sección 1 del problema 5.

0	2 <mark>/</mark> 2	0.9562 5.4562	0.7962 5.3962	0.6623 5.3623	0.6045 5.3545	0.5522 5.3522	0,5233 5,3533	0.5049 5.3549				
	χ' >	2,420 2,7828	2,6058 2,4472	2,7229 2,1835	2,7605 2,0717	832.92 152.2232 2.7865 1.9708	2,7972 1,9148	2.8025 1.8792		2.8102 1.7957	2.8102 1.7957 2.8132 1.6489	2.8102 1.7957 2.8132 1.6489 2.7808 1.5242
	∢	107.8041	122,5905	137,3969 2	727.52 144.8076 2	152,2232 2	898.87 156.6751 2	159,6439 2		1060.41 167.0696 2		
	χ ω	290,98	446.67	627,87	727,52	832,92	898,87	943.99		1060.41	0.7338 1060.41 167.0696 0.8318 1309.37 181.936	1060.41 1309.37 1578.90
N. # 0.04	Rh3	0.3394	0,4384	0.5371	0.5864	0,6356	0.6651	0.6848		0.7338	0.7338	0.7338
	A ₃	23.9211	30,9602	38,0093	41.5376	45,0684	47.1881	48.6017		863,34 52,1375	52.1375 59.2166	52.1375 59.2166 66.3056
	χ Ω	236,93	363,65	511.20	592,30	678,09	731.78	768,49		863,34	0.7323 863.34 0.8298 1065.94	0.7323 863.34 0.8298 1065.94 0.9270 1285.23
	Rh2	0.3391	0.4378	0.5363	0,5854	0,6344	0,6638	0,6834		0.7323		
	AZ	19.4894	25,2285	30,9776	33,8559	6061.72 36.7367	38,4664	39,6200	מטטט מער	44.000		
9 = 0.025	۸,	5222.24	5496,58	5776,38	5918.35	6061.72	6148,40	6206,41	6352,50		6648.77	
	Ph1	2,8869	2.9770	3.0670	3.1120	3,1570	3.1840	3,2020	3.2470		3,3371	3.3371
	۸٦	64.3936	66,4018	68.4100	69.4141	70.4181	71.0206	71.4222	72,4263		74,4345	74,4345 76,4427
	>	4.50	4.60	4.70	4.75	4.80	4.83	4.85	4.90		9.00	5.00

Tabla 5.17. Cálculo de las funciones F_A (h) y F_B (h) er las secciones del problema 5.11

				1	0.000		0.64	1			0.64	1	n Ki Ki3	1	1	T	T
C41 5 -	<u> </u>	·	^	D	0.025		0.04	<u></u>	1 ,	T 5	0.04	£	$ \sum_{i=1}^{n} \frac{\langle i K_i^3 \rangle}{ A_i ^2} $	ΔX_d	- F _A (h)	_ A Xu	F _B (h)
Secćión	h .	У	A 1	P _{h1}	K ₁	A ₂	Rh ₂	K ₂	A ₃	Rh ₃	К3	∑n Ki i≡l Ki	$2g(\frac{n}{\sum_{i=1}^{n} K_i})^3$	$2(\sum_{i=1}^{n} Ki)^{2}$		2 (\(\frac{n}{L=1} \) Ki)^2] ,
1	25 5. 00	7.43	123.2333	5.5248	15405.22	191.7907	2.3410	9617.93	234.3124	3.1398	12560.48	37583.69	3.2979×10 ⁻⁷			9.699×10 ⁻³	0.038410
E.F. = 247.57	255.22	7.65	127.6513	5.7229	16336.66	205.0745	3.3110	11389.20	250.4562	3.3423	13996.82	41722.68	2.7708×10 ⁻⁷			7.870×10 ⁻⁸	0.032020
∆ × _u = 274 m	255.40	7.83	131.2660	5.3850	17114.92	215.9791	3.4728	12382.42	263.7003	3.5071	15217.62	44714.96	2.4830×10 ⁻⁷			6.852×10 ⁻⁸	0.028514
	255.60	8.03	135.2824	6.0650	17996.58	228.1332	3.6516	13524.47	278.4549	3.6894	16621.32	48142.37	2.2117×10 ⁻⁷			5.911×10 ⁻⁸	0.025225
2													_7	_7		_7	
E.F. = 247.77	255.00	7.23	119.2169	5.3448	14577.58	164.4020		8392.52	2 1 0.4655	2.9501	10822.83	33792.93	4.0482×10 ⁻⁷	1.1997×10 ⁻⁷	0.025637	1.528×10 ⁻⁷	0.050187
$\Lambda \times_d = 274. \text{ m}$	255.20	7.43	123.2333	5.5248	15405.14	175.4362		9321.00	224.4 99 7	3.1343	12020.43	36746.57	3.5340×10 ⁻⁷	1.0146×10 ⁻⁷	0.022675	1.292×10 ⁻⁷	0.043437
$A \times_u = 349 \text{ m}$	255.40	7.63	127.2496	5.7049	16251.06	186.5104	3.2774	l	238.5739	3.3177	13267.56	39806.52	3.1091×10 ⁻⁷	0.8646×10 ⁻⁷	0.020201	1.101×10 ⁻⁷	0.037894
	255.60	7.83	131.2660	5.8850	17114.99	197.6246	3.4555		252.6881	3.5003	14563.22	42970.65		0.7420×10 ⁻⁷	0.018113	0.945×10 ⁻⁷	0.033296
	255.80	.8.03	135.2824	6.0650	17996.52	208.7787	3.6326	 	266,8422	3,6819	15906.51	46236.95	2.4557×10 ⁻⁷	0.6408×10 ⁻⁷	0.016334	0.816×10 ⁻⁷	0.029448
3	255.00	6.73	109.1760	4.8946	12589.25	131.8498	2.4582	6003.93	170.4133	2.4829	7811.70	26404.88	6.2149×10 ⁻⁷	2.5023×10 ⁻⁷	0.033409	2.094×10 ⁻⁷	0.074781
E.F. = 248.27	255.20	6.93	113.1924	5.0747	13370.60	142.3839	2.6407	6300.63	183.9474	2.6691	3848.54	29019.77	5.3054×10 ⁻⁷	2.0721×10 ⁻⁷	0.029100	1.734×10 ⁻⁷	0.063352
$\Delta \times_{d} = 349 \text{ m}$	255.40	7.13	117.2087	5.2547	14170.50	152.9581	2.8220	7636.36	1 97 . 5216	2.8543	9936.21	31743.07	4.5747×10 ⁻⁷	1.7318×10 ⁻⁷	0.025586	1.449×10 ⁻⁷	0.054213
$\Delta x_u = 292 \text{ m}$	255,60	7.33	121.2251	5.4348	14989.08	163.5723	3.0022	8510.24	211.1358	3.0386	11073.51	34572.83	3.9728×10 ⁻⁷	1.4599×10 ⁻⁷	0.022616	1.221×10 ⁻⁷	0.046748
	255.80	7.53	125.2415	5.6149	15825.94	174.2265	3.1812	9421.43	224.7900	3.2220	12259.35	37506.72	3.4910×10 ⁻⁷	1.2404×10 ⁻⁷	0.020255	1.039×10 ⁻⁷	0.040760
4	255.00	6.53	105.1597	4.7146	11826.87	116.6138	2.2708	5036.70	154.5482	2.2946	6721.64	23595.21		2.6247×10 ⁻⁷	0.045102	2.499×10 ⁻⁷	0.091213
E.F. = 248.47	255.20	6.73	109.1760	4.8946	12589.25	126.7080	2.4539	5762.96	1 67.8424	2.4316	7691.15	26043.36	6.4522×10 ⁻⁷	2.1526×10 ⁻⁷	0.033696	2.049×10 ⁻⁷	0.076514
$\Delta \times_d = 292 \text{ m}$	255.40	6.93	113.1924	5.0747	13370.57	136.8421	2.63 5 7	6527.66	1 8 1. 1765	2.6676	8711.99	28610.22	5.5128×10 ⁻⁷	1.7837×10 ⁻⁷	0.033562	1.698×10 ⁻⁷	0.064898
$\Delta \times_{u} = 278 \text{m}$	255.60	7.13	117.2087	5.2547	14170.59	147.0163	2.8163	7329,83	1 94 . 5507	2.8526	9782.85	31283.27	4.7571×10 ⁻⁷	1.4919×10 ⁻⁷	0.029387	1.420×10 ⁻⁷	0.055597
5	255.00	6.16	97.7294	4.3814	10467.19	94.0432	1.9259	3639.40	130.0594	1.9461	5068.31	19174.90	1.1039×10 ⁻⁶	3.7805×10 ⁻⁷	0.065329	4.474×10 ⁻⁷	0.139620
E.F. = 248.84	255.20	6.36	101.7457	4.5615	11193.91	103.6634	2.1107	4264.36	143.2796	2.1349	5938.97	21397.24		3.0360×10 ⁻⁷	0.054692	3.593×10 ⁻⁷	0.114352
$\Lambda \times_d = 278 \text{ m}$	255.40	6.56	105.7621	4.7416	11940.01	113.3236	2.2942	4928.14	156.5398	2.3227	6863.74	23731.89	7.6258×10 ⁻⁷	2.4630×10 ⁻⁷	0.046420	2.921×10 ⁻⁷	0.094919
$\Delta x_u = 329 \text{ m}$	2 5 5.60	6.76	109.7785	4.9216	12705.25	123.0237	2.4764	5629.60	169.3399	2.5095	7841.04	26175.89	6.4592×10 ⁻⁷	2.0297×10 ⁻⁷	0.039975	2.401×10 ⁻⁷	0.079741
6	255.00	5.86	91.7049	4.1113	9414.02	77.9870	1.6451	2717.01	108.6032	1.6605	3907.17	15938.20	1.5483×10 ⁻⁶	6.4757×10 ⁻⁷	0.081062	5.2357×10 ⁻⁷	0.186464
E.F. = 249.14	255.20	6.06	95.7212	4.2914	10111.17	37.3472	1.8316	3268.99	121.5634	1.8506	4580.92	17961.08	1.2498×10 ⁻⁶	5.0992×10 ⁻⁷	0.066589	4.1227×10 ⁻⁷	0.149586
$\triangle \times_{d} = 329 \text{ m}$	255.40	6.26	99.7376	4.4715	10828.11	96.7474	2.0168	3860.87	134.5636	2.0397	5410.66	20099.64	1.0251×10 ⁻⁶		0.055616	3.2921×10	0.12189
∆x _u = 266 m	255.60	6.46	103.7539	4.6515	11564 .5 5	106.1876	2.2006	4491.32	147.6038	2.2278	6294.50	22350.37	8.5296×10 ⁻⁷	3.2930×10 ⁻⁷	0.047129	2.6625×10	0.100728
7	255.00	5.63	87.0860	3.9043	8637.12	62.8596	1.4260	1990.96	92.2776	1.4400	2941.83	13569.91	2.1069×10 ⁻⁶	7.2227×10 ⁻⁷	0.124618		
E.F. = 249.37	255.20	5.83	91.1024	4.0843	9311.17	71.5738	1.6134	2461.40	104.9918	1.6312	3637.26	15409.83	1.6712×10 ⁻⁶	5.6009×10 ⁻⁷	0.099996		
∆× _d = 266 m .	255.40	6.03	95.1188	4.2644	10005.33	80.3279	1.7992	2970.73	117.7459	1.8214	4390.25	17366.31	1.3491×10 ⁻⁶	4.4100×10 ⁻⁷	0.081730		
	255,60	6.23	99.1351	4.4445	10719.32	89.1221	1.9836	3517.49	130.5401	2.0105	5198.63	19435.44	1.1065×10 ⁻⁶	3.5210×10 ′	0.067900		
																	·

Para la elevación del agua 255.22 en la sección 1, de la fig(5.37) se tiene que:

$$h_1 + F_B(h_1) = 255.22 + 0.0320 = 255.252$$

La ec.(5.46) implica que:

$$h_2 + F_A(h_2) = 255.252$$

De la fig 5.37 y siguiendo un procedimiento de tanteos, para $h_2=255.23$ m **es** $F_A(h_2)=0.0223$, que satisface la ecuación anterior; esto es

Por tanto, la elevación del agua en la sección 2 sería 255.23 m.

nepitiendo el procedimiento, ahora para las secciones 2 y 3, se tenuría que:

$$h_2 + F_R(h_2) = 255.23 + 0.0424 = 255.2724$$

y por tanteos:

$$h_3 + F_A(h_3) = 255.245 + 0.0 \angle i3 = 255.2723$$

Por tanto, $h_3 = 255.245 \text{ m}$

Siguiendo el procedimiento antes señalado, se -calcularon las elevaciones del agua en las restantes secciones, así como la elevación de la corona de los bordos y losresultados se muestran en la tabla 5.18.

labla 5.18. Elevación del agua y de la corona de bordos del problema 5.11.

Sección	Elev. agua	Tirante y	FA	FB	Elev. corona
1	255.22	7.65		0.0320	255.52
2	255.23	7.46	0.0223	0.0424	255.53
3	255.245	6.975	0.0273	0.0611	255.545
4	255.269	6.799	0.0370	0.0723	255.569
5	255.291	6.451	0.0505	0.105	255.591
6	255.337	6.197	0.0588	0.1307	255.637
7	255.385	6.015	0.083		255,685

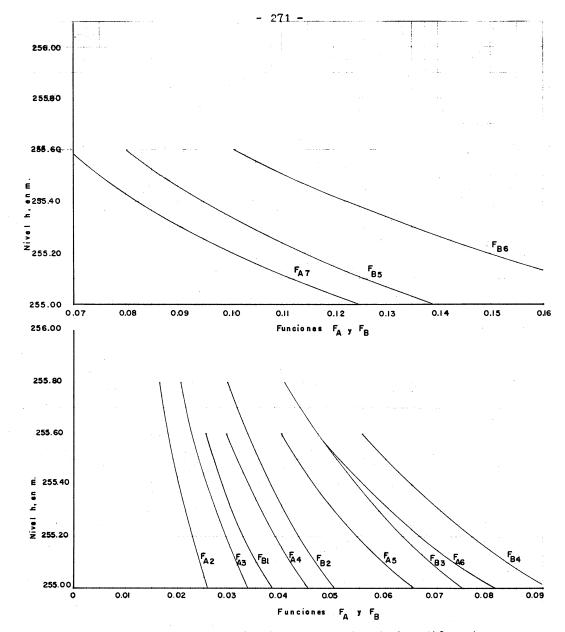


Fig. 5.37. Valores de las funciones $\mathbf{F}_{\mathbf{A}}$ y $\mathbf{F}_{\mathbf{B}}$ de las diferentes secciones del problema 5.11

c) Método Ezra modificado permitiendo variación del gasto.

En ocasiones es necesario calcular los perfiles de flujo del mismo río para diferentes gastos. Es posible - refinar el método Ezra si se observa que las funciones F_A y F_B varían con el cuadrado del gasto lo cual sugiere que se puedan usar las curvas de dichas funciones (calculadas con un determinado gasto) para otros gastos, variando la escala de F_A y F_B . La fig 5.38 muestra la posibilidad de dicho procedimiento. En esta figura se utiliza como ordenada el ni-vel h tal como se hizo en la fig 5.35. Una vez calculadas - las funciones F_A y F_B para un determinado gasto Q_O , conviene utilizar ahora como abscisa la variable k definida por - la ecuación

$$k = \frac{Q_0^2}{Q^2} F(h)$$
 (5.49)

donde \mathbb{Q}_0 es algún gasto representativo elegido cerca delcentro del intervalo en que variarán los gastos. Haciendo— $\mathbb{Q}=\mathbb{Q}_0$ en la ec(5.49), la función k=f(h) se puede representar en el primer cuadrante de la fig 5.38, dibujando las curvas k=f(h) (calculadas para el gasto \mathbb{Q}_0) contra losniveles h y conservando la misma escala en los dos ejes.

La presentación de estas curvas difiere un poco de la que se indica en la fig 5.35 para un gasto único. Sin embargo, con la presentación de la fig 5.38 es posible obtener la solución para $\mathbb{Q}=\mathbb{Q}_0$ cuando $\mathbb{k}=F(h)$. El punto A sobre la curva \mathbb{k}_A correspondiente a la sección 1, representa las condiciones iniciales en dicha sección. Al moverse a lo largo de una línea a 45° (respecto de la horizontal) y quetiene por ecuación : h+F(h) =constante, llega al punto B sobre la curva \mathbb{k}_B correspondiente a la sección 2 y que indica las condiciones existentes en dicha sección al quedar satisfecha la ec. (5.46). Después , el trazo es de B a C sobre una línea horizontal, de aquí a D a lo largo de una línea a 45° y así sucesivamente.

El procedimiento hasta aquí presentado equivale exactamente al indicado en la fig 5.35 para un gasto único. Se puede ahora trazar una solución para cualquier otro gasto de la siguiente manera:

haciendo que
$$r = Q^2/Q_0^2$$
, de la ec (5.49) resulta:
$$F(h) = \frac{Q^2}{Q_0^2} \quad k = r \quad k \tag{5.50}$$

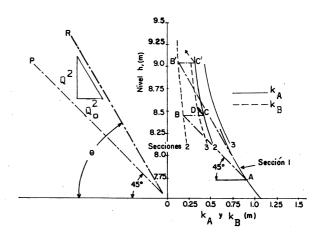


Fig 5.38. Procedimiento del método modificado Ezra para el caso de gasto variable.

rara ir de un punto inicial A' (que representa las condiciones en la sección 1) a un punto p' (que represente a la sección 2), el movimiento debe ser a lo largo de una línea que tenga la ecuación

$$h + r k = constante$$

esto es, una línea con ángulo de inclinación, θ = ang tan(-r), , respecto del eje k. Para ello, es posible trazar la línea de referencia OR, dibujada en el segundo cuadrante de la fig 5.38, con un ángulo de inclinación θ respecto deleje k, de magnitud:

$$\theta = \text{ang tan} \quad \Upsilon = \frac{Q^2}{Q_0^2} \qquad (5.51)$$

Esto implica cambiar tan solo el ángulo 9 de in clinación de la línea de referencia para el gasto que se de sea determinar el perfil de flujo; ello incluye la línea — OP (para Q = Q_0) dibujada para θ = 45° . Esto permite que el conjunto de curvas k sirvan para cualquier gasto que se de-

La preparación de las curvas mostradas en las - fig. 5.35 y 5.38 requieren tanto trabajo como los procedi-mientos de tabulación de los incisos 5.7.1 y 5.7.2. Por lo-

tanto, el método de Ezra,como se ha presentado en la fig 5.35, tiene valor únicamente cuando se requieren varios perfiles de flujo para el mismo gasto - por ejemplo, curvas de remanso ha cia aguas arriba para diferentes alturas de una misma presa.-El método modificado de la fig 5.38 es adecuado cuando se requieren perfiles para varios gastos - por ejemplo, curvas deremanso aguas arriba de una presa de cierta altura con diferentes gastos en el río.

5.7.3 Método de Grimm

Los métodos aplicables a ríos naturales discuti-dos en los incisos anteriores requieren del conocimiento de las secciones transversales del río separadas a distancias -cortas. El método que se describe en este inciso requiere solamente de datos relativos al nivel de la superficie libre -del aqua en varias secciones de un río para diferentes gastos. Estos datos se obtendrán de curvas elevaciones-gastos regis-trados en diferentes secciones de aforo, de tal manera que no requiere el levantamiento; normalmente costoso, de la geome-tría completa de cada sección y en cambio, sí requiere de las curvas elevaciones-gastos en diferentes secciones del río. --De este modo, el método tiene la ventaja del bajo costo cuando se dispone de la información antes indicada, lo cual nor-malmente no ocurre en países con ríos de baja densidad de estaciones de registro. Por otra parte, el método tiene la des. ventaja de su limitada seguridad y aplicabilidad.

El método es particularmente adecuado para obte-ner los perfiles que resultan después de construir una nuevaestructura sobre un río, tal como una presa. Sin embargo, elmétodo falla si se altera el mismo río, debido a que las curvas elevaciones-gastos se obtienen de registros existentes pa
ra ser aplicados a la nueva situación.

La pendiente de fricción $\mathbf{S}_{\hat{\mathbf{f}}}$ en un tramo corto delongitud L se puede expresar como sigue:

$$S_{f} = \frac{\Delta_{h} + V_{2}^{2/2g} - V_{1}^{2/2g}}{L}$$
 (5.52)

donde Δ h es el desnivel de la superficie libre del agua entre las dos secciones separadas la distancia L (fig 5.39).

Si $V_2^2/2g - V_1^2/2g$ es despreciable, entonces Sf= = Δ h/L y el gasto normal, para flujo uniforme, de la fórmula de Manning sería

$$Q = \frac{1}{n} A R_h^{2/3} (\frac{\Delta h}{L})^{1/2}$$
 (5.53)

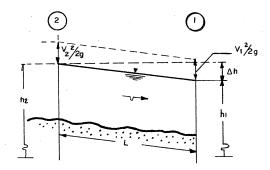
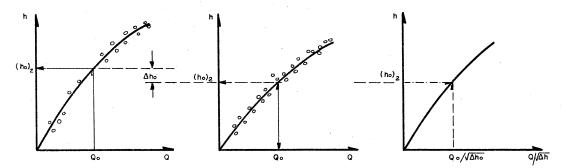


Fig 5.39 framo de un río entre dos secciones

Para un perfil de flujo variado del tipo de remanso correspondiente a un cierto gasto $\mathbb Q_{\mathbf X}$ y un desnivel Δh en el mismo tramo, se puede escribir una ecuación similar a $^{\mathbf X}$ (5.53) que sería

$$Q_{x} = \frac{1}{n} A R_{h}^{2/3} \left(\frac{\Delta h_{x}}{L}\right)^{1/2}$$
 (5.54)


donde se desprecian los efectos del cambio en carga de velocidad debiuo al remanso. De las ecs (5.53) y (5.54)

$$\Delta h_{x} = (\frac{Q_{x}}{Q/\sqrt{\Delta h}}) \qquad (5.55)$$

Esta ecuación se puede usar en el cálculo del perfil de un remanso si a partir de las curvas elevaciones-gastos (registradas sin efecto de remanso) en cada sección, se preparan curvas h contra $\mathbb{Q}/\sqrt{\Delta h}$ para dos secciones limitando un cier to tramo, donde Δ h es el desnivel de la superficie libre del agua entre la sección donde se conoce la curva h - \mathbb{Q} y la inme diata siguiente aguas arriba para el mismo \mathbb{Q} (figs 5.39 y 5.40 a, b y c).

Consideremos que se desea calcular el perfil del flujo para un gasto $\mathbb{Q}_{\mathbf{X}}$ y se conoce la elevación de la superficie libre del agua en la sección inicial $\mathbf{1}$ del tramo. De la -- Fig 5.40 c se determina $\mathbb{Q}/\sqrt{\Delta h}$ y de la ec (5.55) el valor Δh .- ste desnivel se suma a la elevación de la superficie del agua en la sección inicial obteniendo la elevación del agua en la sección 2 en el extremo aguas arriba del tramo. El procedimien to se reitera para cada tramo hasta completar el perfil de flujo requerido.

La curva de la fig 5.40 c se dibuja generalmente como una curva promedio para condiciones variables en el río, ta les como el ascenso o descenso del agua, fondo fluctuante y —

ciones-gastos para lasección 2 de la fig --5.39 registrada sin --efecto de remanso

Fig. 5.40a. Curva eleva- fig. 5.40b. Lurva elevaciones-gastos para la -sección 1 de la fig 5.39 registrada sin efecto de remanso

Fig. 5.40c. _urva eleva ciones-Q/ Ah para la -sección 1 de la fio 5.39

otros efectos secundarios. Debido a estas condiciones varian-tes, los puntos de la curva están a menudo muy dispersos. siendo necesaria una curva regular que dé condiciones medias en el río. Cuando existan suficientes mediciones, los datos de dudosa seguridad deben ser rechazados. En general, a las mediciones mas recientes debe dárseles mayor peso. Debe tenerse presenteque al efectuar el aforo se tienen normalmente dificultades y. por lo mismo, imprecisiones.

La curva de la fig 5.40c se puede extrapolar hacia arriba y hacia abajo del intervalo de datos observados.exten-diendo la curva hacia sus extremos de acuerdo con la tendencia general de su curvatura. Sin embargo, cualquier cambio bruscoen los elementos hidráulicos de la sección del río producirá-cl cambio correspondiente en la curvatura. En este caso. una corrección para el cambio, si se conoce, deberá ser incluídoen la extrapolación. Este método tiene mayores ventajas cuando en una corriente se desea un número de gastos correspondien tes a niveles conocidos o viceversa. Lon tolerancias adecuadas para condiciones variables, se pueden obtener resultados satis factorios para tramos de grandes ríos de 80 a 160 km de la estación de medida. Los datos requeridos para el método son a -menudo mas economicos que los requeridos para el método estandar de pasos. Sin embargo, esta ventaja es usualmente descarta da por la insequridad de los resultados, debido que en el méto do se ignora el cambio en la carga de velocidad. Por esta ra-aco, el método es mas satisfactorio para problemas en que la--

velocidad es bastante abajo de la crítica y disminuye en la dirección de la corriente.

5.7.4. Método de Escoffier

Con frecuencia acontece que el número de Froude en el río es suficientemente pequeño, justificando las suposi ciones hechas en el método de Grimm de que la carga de veloci dad es despreciable y que la pendiente de energía es iqual ala pendiente de la superficie libre del aqua. Sin embargo. -también con frecuencia, ocurre que los perfiles se requieren para niveles en el río mucho mas altos que los observados enavenidas registradas, haciendo inadecuado el método de Grimm.

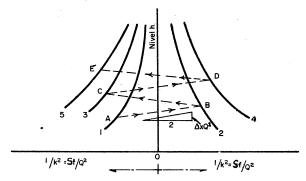
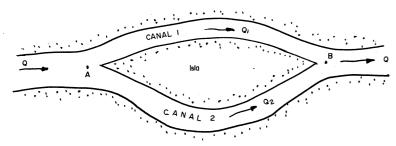


Fig 5.41. Método de Escoffier para determinar perfiles de flujo.

En esos casos, el perfil de flujo se puede deter minar por un método debido a Escoffier y que se muestra enla fig 5.41. Para cada sección del río, la cantidad S_{r}/Q^{2} --(esto es, 1/k², donde k es el factor de conducción de la sec ción) se utiliza como abscisa contra el nivel del agua comoordenada. Las curvas (representando secciones del río sucesivas) se dibujan alternadamente a la izquierda y derecha deleje vertical, tal como se muestra.


Dado el nivel en la sección l. representado porel punto A, se determina el nivel en la 2 (punto B) dibujando una línea AB con pendiente igual a $\Delta x Q^2/2$, donde Δx es la longitud del tramo entre las secciones 1 v 2. De esta - construcción gráfica resulta que la diferencia Ah de niveles entre A v B. vale:

$$\Delta h = \frac{s_{f_1} + s_{f_2}}{q^2} \frac{\Delta \times q^2}{2} = \frac{s_{f_1} + s_{f_2}}{2} \Delta \times (5.56)$$

Satisfaciendo la condición de que la pendiente de la superficie del agua es igual a la pendiente de energía. El punto C, que representa el nivel en la sección 3, se obtiene dibujando una línea BC con una pendiente igual a – $\Delta \times$ Q $^2/2$ y los puntos subsecuentes D, E, ... etc. se obtienen dibujan do líneas CD, DE, ... etc, de pendientes alternativamente — positivas y negativas. De la misma manera que con el métodomodificado de Ezra descrito en el inciso c, se requiere única mente de una serie de curvas para todos los gastos. Al variar el gasto se cambiará la pendiente de las líneas AB, BC, ... etc.

5.7.5. Bifurcación de un río alrededor de una isla.

Se puede determinar, de manera aproximada, la distribución del gasto total de un río cuando éste se bifurca en 2 brazos para rodear una gran isla.

rig 5.42a. Bifurcación de un río.

Fig. 5.42b.c. Cálculo de la repartición del gasto ${\bf Q}$

En el caso ilustrado en la fig 5.42a se consideraque el flujo en los dos brazos que rodean la isla es subcrítico. Para una serie de valores de los gastos \mathbb{Q}_1 y \mathbb{Q}_2 (distribuídos de manera que su suma sea el gasto total \mathbb{Q}), se calculan los perfiles de flujo en los dos brazos considerando en todosellos un nivel inicial único de la superficie libre del aguaren el punto B, situado en el lugar en que se unen los flujos divididos. Esto permite definir en todos los casos un nivel de la superficie libre en el punto A situado en el lugar en queses separan los dos brazos.

La elevación inicial de la superficie del agua enel punto B se puede determinar de la curva elevaciones-gastos en esta estación, correspondiente al gasto total Q. La eleva-ción de la superficie del agua en el punto A, obtenida de los cálculos del perfil de flujo a lo largo del canal 2,se lleva-como abscisa y la correspondiente al canal l como ordenada.obteniendo entonces una serie de puntos como los de la fig 5.42b que corresponden a diferentes proporciones de Q, y Q, en que se reparte el gasto total. Debido a que el flujo se divide enel punto A, las dos elevaciones de la superficie del aqua obte nidas en este punto para los dos canales deberán ser iquales si la repartición supuesta del gasto es correcta. De este modo. la elevación correcta se puede obtener a partir de la curva di bujada al ser intersectada por la linea de puntos que bisectael ángulo entre los ejes coordenados, esto es, a 45º. La línea de puntos representa la condición de igualdad de las dos eleva ciones calculadas. Simultaneamente se lleva, sobre la fig. ---5.42c, la elevación calculada en el punto A para el canal l -contra el gasto Q1, resultando una curva, a partir de la cual. se obtiene el gasto correcto Q1 para la elevación correcta en-A. El gasto correspondiente al canal 2 será: $\mathbb{Q}_{>}=\mathbb{Q}-\mathbb{Q}_{1}$. Si el --flujo en los dos brazos es supercrítico, el punto de control será en A de tal manera que la repartición del gasto dependerá de la condición a la entrada de los canales divididos. Durante la condición de flujo normal, se puede suponer que todos los flujos son uniformes y que la repartición de gastos se puede obtener de manera aproximada a través de las siguientes rela-ciones: $Q_1 = k_1 \sqrt{S_1}$, $Q_2 = K_2 \sqrt{S_2}$, y $Q = Q_1 + Q_2$.

5.8. Capacidad de conducción de un canal

Se tratará aqui el problema de la capacidad de --conducción de un canal de pendiente pequeña que comunica dos almacenamientos de nivel variable; esto es, conocidas las di-mensiones de la sección, pendiente y rugosidad del canal, se desea determinar el gasto que puede conducir para diferentes niveles en los almacenamientos, o sea la llamada "curva de entrega".

Existen casos que se clasifican de acuerdo con lamagnitud de tres variables que son: el tirante y_1 en el extremo aguas arriba del canal, el tirante y_2 en el extremo aguas abajo y el gasto $\mathbb Q$ en el canal.

a. Firante y_1 constante. cl nivel A del agua en el depósito — del extremo aguas arriba del canal, no cambia, mientras fluctúa el nivel B en el extremo aguas abajo. En la fig 5.43 se muestran los perfiles de flujo para diferentes valores de y_2 y su relación con los gastos Q correspondientes, a través de la curva — de entrega Q = $f(y_2)$, existiendo varias condiciones de flujo,— como sigue:

a.l Condición de flujo uniforme. Este ocurre para $y_2 = y_1 = y_n$.

La superficie libre queda representada por la recta an paralela a la plantilla. El gasto \mathbb{Q}_n correspondiente a esta condición queda definido por la ecuación: $\mathbb{Q}_n = K_n \sqrt{S_0}$; donde: K_n es el factor de conducción de la sección del canal para eltirante y2 y S_0 su pendiente.

a.2. condiciones de flujo para el perfil Ml. Cuando $y_2>y_n$ elperfil de flujo es del tipo Ml. El límite superior del perfilcoincide con el nivel horizontal indicado por la recta $a\bar{z}$; esto es, para $y_2=y_Z$ el gasto es cero al no existir diferenciade niveles entre los dos almacenamientos y, además, para $y_2>y_Z$, el flujo invierte su direccion.

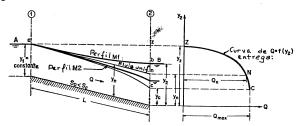


Fig 5.43 Entrega de un canal en flujo subcriticoy y₁ constante

Para cualquier flujo intermedio entre el uniforme y el límite superior $(y_n < y_2 < y_2)$, el tirante y_2 y el gasto—correspondiente se determinan calculando los perfiles para diferentes valores de tanteo como sigue: Se elige un gasto me—nor que \mathbb{Q}_n y con distintos tirantes y_2 (entre los límites—arriba señalados) se calculan los perfiles \mathbb{M}_1 completos que—se produzcan. Para el gasto elegido, el tirante y_2 correcto—será aquel que defina un perfil tal que a la distancia \mathbb{L} se—produzca el tirante y_1 en el extremo aguas arriba del canal.

El procedimiento se reitera para otros gastos (menores que \mathbb{Q}_n) que se elijan, obteniendo así la curva $\mathbb{Q}=f(y_2)$ indicada en la fig 5.43.

a3. Condiciones de flujo para el perfil M2. Cuando $y_2 \angle y_n$, el perfil de flujo es del tipo M2 y el procedimiento de cálculo-sería semejante al del perfil Ml para gastos $\, \mathbb{Q} \, \nearrow \, \mathbb{Q}_{\mathrm{n}} \, . \,$ Cua $\, \mathrm{n} \, \mathrm{do} \, y_2$ sea igual al crítico y_c en la sección 2, el gasto alcan-zará el valor máximo posible debido a que, si y2 < yc, se pre-sentará una descarga del tipo de vertedor libre. Como se indica sobre la curva $Q = f(y_2)$, el gasto máximo será igual al --crítico (en la sección 2) dado por la ecuación Qc = Zc /g',donde Zc es el factor de sección para flujo crítico en la sec ción 2. De la fig (5.43) se observa que la porción NC de la -curva $Q = f(y_2)$ es muy inclinada de modo que Q_{max} excede a -Qn por una cantidad muy pequeña. Esto ocurre en la mayoría delos casos prácticos, excepto para canales muy cortos u horizon tales. Con referencia ahora a la fig 5.44, el punto extremo d de la curva límite M2 se localiza para un tirante 0.99 y_{n} . Si la longitud L del canal es mayor que la longitud L' del per fil M2, no se afectarán las condiciones aguas arriba del punto d, aun cuando cambie y_2 (entre y_c y y_n), manteniéndose el --mismo gasto.

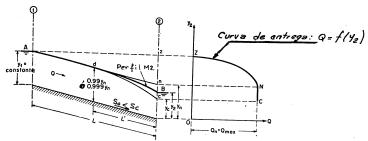


Fig. 5.44. Entrega de un canal cuya longitud excede a la del perfil M2.

Si L>L' el gasto máximo será prácticamente igual a \mathbb{Q}_n , esto es, la porción NC de la curva correspondiente será-prácticamente vertical. A medida que la pendiente es más peque ña, el perfil será más largo o viceversa; por esta razón, el - reducir la pendiente tendrá un efecto similar al de acortar el canal. Por lo tanto, en la práctica se puede aceptar que el -- gasto máximo posible en un canal largo o de pendiente muy peque ña es igual al gasto normal.

b. Tirante y2 constante. El nivel del agua en el extremo aguas

abajo del canal es constante mientras que varía el de aguas -arriba.

b.1. condición de flujo uniforme. Cuando $y_1=y_2=y_n$ el ---flujo es uniforme y el perfil nb de la fig 5.45 es paralelo al fondo del canal. El gasto Q corresponde al punto N sobrela curva de entrega y es igual a K_n $\overline{|S_0|}$, donde K_n es el factor de conducción de la sección l con tirante $y_1=y_2$ y S_0 la pendiente de la plantilla.

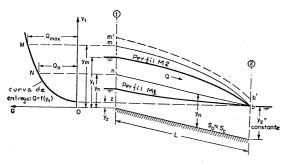


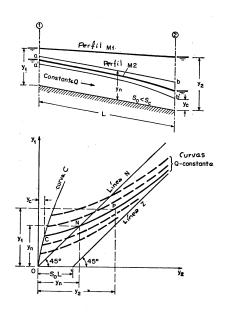
Fig. 5.45. Entrega de un canal con flujo subcritico y tirante y_2 constante.

b.2. Condiciones del flujo para el perfil M₁. Para cualquier tirante $y_1 < y_n$, el perfil del flujo es del tipo M₁, siendo – el gasto menor que Q_n. El límite inferior mínimo posible para y_1 es y_2 siendo el perfil horizontal y el gasto cero.

b.3. Condición del flujo para el perfil M2. Para tirantes — $y_1>y_n$ el perfil del flujo es del tipo M2 con gastos mayores que \mathbb{Q}_n . Cuando y_1 alcanza un tirante y_m que corresponde—al gasto crítico en la sección 2, el gasto llega a su valormáximo \mathbb{Q}_{max} . Cualquier tirante $y_1>y_m$ no puede considerar se debido a que simplemente se elevaría el perfil de flujo—mb a la posición mostrada por la linea de puntos m'b' ; por lo tanto, esto requiere un incremento en el tirante aguas —abajo y_2 , el cual se ha establecido como constante . El gasto \mathbb{Q}_{max} es igual al gasto crítico en la sección 2 siendo su magnitud $Z_{\mathbb{C}}$ \mathbb{Q}_{p} , donde $Z_{\mathbb{C}}$ es el factor de sección en 2 para—un tirante $y_{\mathbb{C}}=y_2$.

c. Gasto Q constante. Este es el caso en que la entrega del canal es constante, mientras fluctúa el nivel en los almacenamientos de los dos extremos del canal.

c.l. Condiciones de flujo uniforme. En la fig 5.46 se

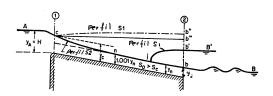

esquematizan varios perfíles de flujo posibles. Cuando $y_1=y_2=y_n$, el flujo es uniforme y la superfície es una línearecta ab paralela a la plantilla del canal. El tirante — normal se puede determinar por la fórmula de Manning para — el gasto Q constante.

- c.2. Condición de flujo para el perfil Ml. Para posicionesarriba de ab, el perfil de flujo pertenece al tipo Ml. Ellímite superior del perfil Ml es una línea horizontal y y_2 se aproxima a y_1 + S_oL como un límite. A medida que se aproxima a esta condición, decrece la diferencia entre losniveles de los depósitos y con ello la carga, o la velocidad del flujo. Sin embargo, el área hidráulica se incrementa a medida que aumentan los tirantes; mientras que el gasto (como producto del área por la velocidad) puede permanecer constante e igual a un valor dado.
- c.3. Condición de flujo para el perfil M2. Para posicionesabajo de ab, el perfil del flujo es del tipo M2. La posición inferior mínima posible del perfil M2 es a'b'; en esta posición, y_2 es igual al tirante crítico correspondiente al gasto dado \mathbb{Q} .

La curva Q-constante. Se puede obtener la relación entre los tirantes y_1 y y_2 para Q constante (fig 5.46) La curva resultante CNP se conoce como la curva Q-constante. Se pueden construir también varias curvas auxiliares para -- hacer más claros ciertos aspectos característicos de la curva Q-constante. La línea N es una recta dibujada desde el -- órigen de las coordenadas e inclinada a un ángulo de 45° con los ejes coordenados. Esta línea es el lugar geométrico deltirante normal para todos los gastos. Para cualquier punto-sobre esta línea, $y_1 = y_2 = y_n$ La curva Q-constante interesecta esta línea en el punto N donde $y_1 = y_2 = y_n$, que es - el tirante normal para el gasto dado Q.

La curva C es aquella sobre la cual y_2 es igual al tirante crítico y_c de la sección transversal 2^2 para un-gasto dado y sobre la cual y_1 es el tirante correspondiente en la sección l. Se observa que y_2 no puede ser menor que y_c de la sección 2 para el gasto dado Q. Por ello, la curva —Q-constante termina en el punto C sobre esta curva que hacey $y_c = y_c$ en la sección 2 para el gasto Q.

La línea Z es una recta paralela a la línea N -- desde un punto sobre eleje ya una distancia S L desde el origen O. Esta línea representa la condición $y_2 = y_1 + S_0 L$, o - sea el límite superior del perfil Ml. Por lo tanto, la curva Q constante se aproxima asintóticamente a esta línea desde-la izquierda en tanto y_1 y y_2 llegan a ser muy grandes. -


rig. 5.46. Ehtrega de un canal con flujo subcrítico y Q constante.

Las coordenadas y_1 y y_2 de cualquier punto P sobre la curva Q-constante, para un gasto dado Q, se pueden determinar porun cálculo del perfil de flujo. En general, cuando los puntos C y N y, además, uno o dos puntos más son localizados, se puede dibujar la curva Q-constante de manera contínua.

Dibujando una serie de curvas Q-constante para--varios gastos (tales como las líneas de puntos) se puede obte ner un diagrama general que represente todas las condiciones-de flujo posibles en el canal dado.

5.8.2 Entrega de un canal en régimen supercrítico, Cuando -- la pendiente del canal es pronunciada, esto es, mayor que la-pendiente crítica, el régimen en el canal es supercrítico - - (fig 5.47). En la práctica, los canales de pendiente pronun-ciada son usualmente cortos, tales como rápidas usadas como - vertedores y caídas. Si el canal es demasiado inclinado, de--

tal manera que se desarrolla un flujo ultrarápido, entonces el flujo no llega a ser permanente y un estudio de flujo no permanente no es objeto de este capítulo

rig. 5.47. Entrega de un canal en régimen supercrítico.

a. Descarga. Como la sección de control en un canal a régimen supercrítico se encuentra en el extremo aguas arriba, la
entrega del canal está gobernada plenamente por el gasto crí
tico en la sección l, el cual es simplemente igual al gastoa trayés de un vertedor.

b. Perfil de flujo. El tipo de perfil de flujo desarfolladoen un canal de fuerte pendiente depende de la situación en el desfogue.

b.l Cuando el nivel B en el desfogue es menor que el tirante de salida en la sección 2, el flujo en el canal no queda-afectado por el nivel en el desfogue. El perfil de flujo pasa a través del tirante crítico cerca del punto c, de una --forma convexa a una cóncava y se aproxima al tirante normala través de una curva de abatimiento del tipo 52. Como una-regla, la curva de abatimiento CN es comparativamente corta-y $\mathbf{y_n}$ es el nivel mas bajo posible en el canal. En el diseñode dichos canales, el tirante normal se hace igual al tirante requerido para pasar cuerpos flotantes, o para evitar elefecto de socavación.

b.2. Cuando el nivel B en el desfogue es mayor que el tirante final, el desfogue elevará el nivel del agua en la porción aguas abajo del canal para formar un perfil Sl entre j y b' produciendo un salto hidráulico en el extremo j del perfil. Sin embargo, el flujo aguas arriba del salto no quedará afectado por el desfogue.

b.3. A medida que se aleva el mivel de desfogue, el saltose moverá hacia aguas arriba, manteniendo su altura y forma en la zo na de flujo uniforme nb, hasta que alcanza el punto n. Desde — ehí, el salto se moverá hacia aguas arriba sobre la curva cn, — disminuyendo gradualmente de altura. La eltura del salto llega-a cero cuando alcanza el tirante crítico en c. Mientras que esto no ocurrá, el perfil de flujo alcanza su límite teórico cb—del perfil Si . Mas allá de este límite, el flujo entrante quedará directamente afectado por el nivel de desfogue y la entrada actúa como un vertedor sumergido. Para un cálculo práctico—la línea horizontal cb'', se puede tomar como el límite práctico el del nivel de desfogue. Esto evita el cálculo de bº' bº y proporciona un margen de seguridad.
5.8.3. Condiciones en la salida y entrada a un canal

En los dos incisos anteriores, la entrega de un canal fue referida a los tirantes y_1 y y_2 en sus dos extremos, sin considerar las condiciones que acompañan la entrada o salida — del agua (subcapítulo 5.3).

a. Salida. Cuando un canal descarga a un depósito, se debe considerar que la energía cinética del agua(igual a la carga de velocidad $\propto V_2^2/2g$ en la sección de salida) se convierte en energía potencial. De esta manera, el nivel en el depósito deberíaser mas alto que el tirante en la salida en una cantidad equivalente a dicha energía (fig 5.48a). Sin embargo, usualmente dicha energía se disipa enteramente por la turbulencia originadaen la descarga, por lo cual, puede ser ignorada, pudiendo considerar que y_2 puede ser tomado igual con y_3 . Si $y_3 < y_2$ (fig 5.48b), el tirante y_2 es igual al tirante crítico y_3 de la sección y_3 independientemente del nivel que se tenga en y_3 .

c. Entrada libre. Cuando el agua entra libremente a un canal de pendiente suave (fig 5.48c), el tirante y_1 está relacionado con el nivel estático A del depósito aguas arriba a través de la —ecuación de energía. La relación entre los tirantes y_1 y y_A sepuede expresar por la ecuación:

$$y_{A} = y_{1} + \alpha_{1} \frac{v_{1}^{2}}{2g} + h_{e}$$
 (5.57)

Para régimen subcrítico, el término h es la pérdida de energía por cambio de sección en la entrada y se puede — expresar en términos de la carga de velocidad en la sección l, esto es.

$$h_e = C_e \frac{V_1^2}{2g}$$

donde C es un coeficiente que depende de la forma de la entrada y tiene los siguientes valores:

0.5 a 0.6 en paredes y fondo con cantos agudos
0.3 a 0.4 en paredes con cantos agudos y fondo abocinado

0.06 a 0.10 en paredes y fondo abocinados con una - pila intermedia

Despejando a V_1 de la ec. (5.57), resulta:

$$v_1 = \frac{1}{x_1 + c_c} \sqrt{2g (y_A - y_1)}$$

La entrega del canal es entonces:

$$Q = A_1 V_1 = \frac{A_1}{(x_1 + C_2)} \sqrt{2g(y_A - y_1)}$$
 (5.58)

En la mayoría de los problemas prácticos, se conoce el tirante-y_ en lugar de y_1. Por ejemplo, en el caso de tirante aguas ---afriba constants. Para cualquier condición dada de y_A, la relación entre Q y y_1 se puede establecer por la ec (5.58). De esta manera, se obtiene una curva que represente esta relación y además, las relaciones entre y_A, y_1 y Q.

Para régimen supercrítico, el flujo en la sección les crítico. El problema se simplifica por el hecho de que la relación entre \mathbf{y}_1 y \mathbf{y}_A es practicamente fijo, independientementede la pérdida por frícción a la entrada.

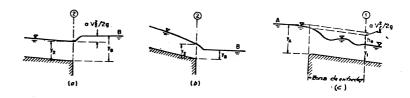


Fig 5.48 Condiciones de salida y entrada a un canal

TRANSICIONES EN CANALES

6.1 Introducción

En el diseño hidráulico de canales, con frecuencia se re quiere modificar la forma y dimensiones de la sección transversal, o cambiar la dirección del trazo en planta o en elevación, a fin de satisfacer requerimientos hi—dráulicos, topográficos o de tipo estructural. Los cambios en la sección o en el alineamiento de las paredes, normalmente se realizan de manera gradual y en tramos relativamente cortos, con el fin de producir un cambio continuo en las condiciones del escurrimiento. En otros casos —como el de las curvas en canales— se producen cambios transitorios en los que el escurrimiento even—tualmente retorna a su estado original. Los cambios producidos pueden afectar al escurrimiento a una gran distancia, hacia aguas arriba o hacia aguas abajo, del sitio en que se producen.

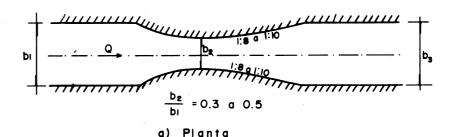
La estructura que permite lograr estos cambios en el flujo, tanto en dirección, pendiente, sección transversal o elevación de la plantilla del canal, se conoce como transición. Su función es lograr la modificación gradual del escurrimiento, de manera de reducir los efectos de pérdidas excesivas de energía, ondas cruzadas y otras turbulencias, así como proporcionar seguridad a

la conducción. La forma de la transición puede variar, desde muros de cabeza rectos y normales al escurrimiento que produzcan contracciones o ampliaciones bruscas, hasta estructuras con diseños muy elaborados, como los que se utilizan para conectar un canal con la entrada o salida de un túnel o sîfón, o bien después del tubo de succión de una turbina. Aunque las pilas de puente, rejillas u otro tipo de obstáculos interpuestos al paso del agua, por sí mismos no constituyen una transición, su acción produce los mismos efectos en el escurrimiento que las transiciones.

Antes de presentar los diferentes problemas relacionados con el tema, conviene aclarar algunos aspectos para evitar confusiones. Como antes se ha definido, las estructuras de control en un canal (natural o artifical) son aquellas que presentan características tales que fi jan una relación entre tirante y gasto en la zona próxī ma a la estructura; dentro de esta definición quedarían comprendidas algunas de las transiciones que aquí se es tudian. Esto significa que todos los controles son transiciones, pero no todas las transiciones son contro les y por esta razón, conviene tratar los problemas separadamente. Existen transiciones que siempre actúan como controles, como es el caso de los aforadores tipo venturi. Otras transiciones pueden, en algunas circuns tancias, actuar como controles como en el caso de las pilas de puente, alcantarillas, etc., que actúan parcialmente como controles definiendo la relación tirante-gasto mediante su geometría y las condiciones aguas arriba o aguas abajo de las mismas. De este tipo de transiciones nos ocupamos principalmente en este capítu 10.

En el estudio de las transiciones es necesario distin—guir si en ellas se produce o no un cambio de régimen. En muchos casos el diseño y funcionamiento se ve afecta do de manera importante por la presencia de fenómenos exclusivos de cada tipo de régimen. En el caso de régimen subcrítico, cualquier perturbación en la velocidad o en el tirante puede transmitirse hacia aguas arriba; en el caso de régimen supercrítico, la transmisión es únicamente hacia aguas abajo.

Antes de presentar el diseño propiamente de transiciones, iniciamos con el medidor tipo venturi que actúa to
talmente como control, y que se utiliza como aforador de
canales en sus diferentes modalidades.


6.2 Aforadores

El mismo principio del venturímetro se utiliza para aforar canales de dimensiones pequeñas. Para ello es necesario un tramo de canal con pendiente pequeña y sección rectangular, en el cual se produce un estrangulamiento, bien en las paredes laterales, en el fondo mediante un umbral, o por una combinación de ambos.

De acuerdo con la Fig. 6.1, sean b_1 , y_1 y V_1 el ancho, el tirante y la velocidad en la sección normal del canal y b_2 , y_2 , V_2 las mismas características en la sección del estrangulamiento. De las ecuaciones de continuidad y de Bernoulli resulta que:

$$\frac{V_1^2}{2g} = \left(\frac{b_2 \ y_2}{b_1 \ y_1}\right)^2 \quad \frac{V_2^2}{2g}$$

$$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g}$$

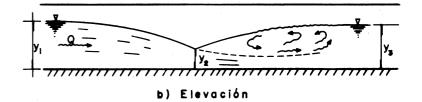


Fig. 6.1 Aforador tipo Venturi

De las ecuaciones anteriores resulta que:

$$\left[1 - \left(\frac{b_2 \ y_2}{b_1 \ y_1}\right)^2\right] \frac{V_2^2}{2g} = y_1 - y_2$$

y de manera análoga al venturímetro para tuberías, el qasto real vale:

$$Q = \frac{C_d \quad b_2 \quad y_2}{\sqrt{1 - (\frac{b_2 y_2}{b_1 y_1})^2}} \quad \sqrt{2g \quad (y_1 - y_2)}$$
 (6.1)

donde C_d es un coeficiente que corrige el error de considerar $\alpha_1 = \alpha_2 = 1$ y despreciar la pérdida de energía en la ecuación de Bernoulli; varía entre 0.96 y 0.99 (Ref. 15).

En el caso de utilizar un umbral en el fondo del venturímetro (Fig. 6.2) con altura w, además de la contrac ción en el ancho, se puede usar la Ec. (6.1), transformándola como sigue:

$$Q = 0.99$$
 $C \sqrt{g} b_2 h_1^{3/2}$ (6.2)

donde h_1 representa el desnivel entre la superficie aguas arriba de la contracción y el del umbral y C un coeficiente que, según Garthe, depende de la relación

$$\frac{b_2}{b_1} \ (\frac{h_1}{h_1 + w}) \qquad \text{y cuyos valores medios se obtienen de la} \\ \text{Fig. 6.3, en la cual, para } w = 0, \text{ se cubre el caso de la Fig. 6.1 (Ref. 28).}$$

Los medidores de Venturi antes indicados han resultado poco satisfactorios debido a que ocurren diferencias $y_2 - y_1$ pequeñas para números de Froude bajos. Por esta razón se han desarrollado los "medidores de onda estacionaria" cuya geometría en el estrangulamiento produce una sección crítica, seguida por una longitud corta de regimen supercrítico y un salto hidráulico. El resultado es un medidor de tirante crítico el cual no con

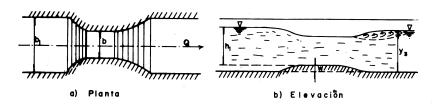


Fig. 6.2 Aforador con reducción de ancho y umbral de fondo

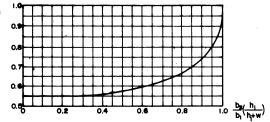


Fig. 6.3 Coeficiente C en la ec. (6.2.)

tiene regiones de agua muerta y poca pérdida de energía, aunque tiene las dificultades usuales concernientes a la localización del tirante crítico.

El medidor mejor desarrollado, dentro de los de este tipo, se debe a Parshall (1920) y ha sido muy utilizado en plantas de tratamiento y en sistemas de riego (Fig. 6.4). Consiste en un tramo corto, llamado garganta, de paredes paralelas y piso descendente, precedido por otro tramo de paredes que convergen uniformemente con piso horizontal y seguido de otro de paredes que divergen uniformemente, con piso ascendente en la dirección del escurrimiento. La sección de control, para la que el tirante es crítico, ocurre cerca del extremo aguas abajo del tramo convergente y aguas arriba de la cresta.

El aforador Parshall puede operar con descarga libre o

Existen, 22 diseños estándar perfectamente calibrados pa ra cubrir un intervalo de gastos desde 0.0001 m³/s, hasta 93 m³/s (Ref. 29). Las dimensiones de estos medido res se proporcionan de acuerdo con el ancho b de la gar ganta, el que varía desde 0.0254 m hasta tamaños de 15.24 m y que se muestran en la Fig. 6.4. Aunque la forma básica de los medidores es la misma para todos los diseños estándar, no existe semejanza geométrica en tre uno y otro, por lo que la relación entre gasto y carga tuvo que ser obtenida por un programa exhaustivo de calibración, estableciendo las fórmulas empíricas para cada tamaño, como lo indica la tabla de la Fig. 6.4. Por tanto, es esencial construir los medidores con la mayor exactitud posible, de acuerdo con las dimensiones presentadas en la tabla, y medir las cargas h₁ y h₂ (Fig. 6.5) en las posiciones indicadas en dicha tabla.

De acuerdo con el tamaño, la descarga es libre hasta los valores de h_2/h_1 que señala la citada tabla. Para es tas condiciones, las fórmulas para el gasto son del tipo:

 $Q = k \ h_1^n$, donde Q es el gasto en m^3/s y h_1 la carga aguas arriba en m. Estas permiten el cálculo de Q con un error de + 3 por ciento.

La tabla de la Fig. 6.4 muestra la fórmula para cada an cho de garganta y la Fig. 6.6, las gráficas de variación del gasto con descarga libre para los medidores presentados en la Fig. 6.4.

El flujo es sumergido cuando h_2/h_1 excede los valores señalados en la tabla de la Fig. 6.4, mismos que crecen en la medida que aumenta el ancho de garganta. Las Figs. 6.7a, b y c proporcionan directamente el gasto para condiciones de ahogamiento, en medidores Parshall de 0.0762 m, 0.1524 m y 0.2286 m. Para medidores de 0.3048 m, la Fig. 6.7d proporciona la corrección al gas to que debe restarse al obtenido para la misma carga aguas arriba en condiciones de descarga libre. Cuando

PLANTA

PLANTA

PLANTA

PLANTA

CONTENT

- 295 -

				_	_	_	-				-			_	_	-		-		_	-	_	_	_		٦.
LIMITE PARA DESCARGA	h ₂ /h ₁	9	9	3	0.50	09.0	0.60	0.70	0.70	0.70	0.70	0.70	0.0	0.70	0.70	0.70		0.80	0.80	0.80	0.80	0.80	0.80	0.0	0.80	
le car	×				0.33	0.45	0.61	0.76	0.76	0.76	0.76	0.76	0,76	0.76	0.76	0.76		1.0	1.37	1.67	1.83	1.83	1.83	1,83	1.83	
Rango de car	E		2000													0.076		0.0	0.0	0.0	0.0	0.0	0.09	0.0	0.09	
Ecuación	(métrico)	0.000,1:36	8.112021		0.1//1h	0.3812h	0.53541,05	0.6909hi.82	1.056h638	1,428h .550	2,1844,566	2:953h, 578	3,732h	4.519h	5,312h[.601	6.112h		7.463h	8.859h	10.96h	14.45h	17.94h	21.44h	28,434	35.41h	
Rango de Gastos	Máximo	1/3eg			32.1	Ξ	251	457	969	937	1427	1923	2424	2929	3438	3949	, ee	8.28	14.68	25.04	37.97	47.14	56,33	74.70	93.04	
Rango d	Minimo	7 88	5 6	2 :	0.77	1,50	2.50	3,32	4.80	12.1	17.6	35.8	44.1	74.1	82.8	97.2	E	0.16	0.19	0.23	0,31	0.38	94.0	09.0	0.75	
	7		, ,		23	1	;	1	1	١	1	;	;	1	;	ł		1	ł	ł	;	i	;	;	;	
	>	:	2 2	3 8	88	9/	9/	92	92	92	92	92	92	9/	92	92		289	229	229	229	553	229	523	229	
	×		• •	2 :	52	51	51	51	15	51	51	51	51	21	51	51		305	305	305	905	305	305	305	305	
	œ		1		1	904	904	508	508	508	508	610	610	610	610	610		ł	1	1	1	ļ	ļ	ļ	ŀ	
	۵		l	ļ	1	305	0801	1492	9291	1854	2222	2711	3080	3442	3810	4172		ł	I	1		1	i	1	ŀ	
	z	;	£ :	2 :	23	114	114	229	229	556	229	529	558	529	229	523		343	343	457	. 989	989	989	989	989	
					ł	305	305	381	381	381	381	457	457	457	423	457		i		1		ł	1	1	1	١
:	×		2 2	7 :	52	9/	92	92	92	92	92	92	92	9/	92	92		152	152	229	305	305	305	305	305	l
a e	_	;	9 5	707	309	1	1		1	ļ	1	1	ļ	;	ļ	1		١	1		1	1	į	1		l
a fig	9	1	503	5	302	610	457	914	914	914	914	914	914	914	914	914		1829	2438	3048	3658	3962	4267	4877	9609	
dical	Į.	,	? :	: :	152	305	305	610	610	610	610	910	610	910	610	610		914	914	1219	1829	1829	1829	1829	1829	
ni omo	u	8	677	5 :	427	610	762	914	914	914	914	914	-614	914	916	914		1219	1524	1829	2134	2134	2134	2134	2134	
ones c	0	1	ì	;	529	397	575	842	1026	1206	1572	1937	2302	2667	3032	3397		4756	2607	7620	9144	10668	12313	15481	18529	
Dimensiones como indica la figura en	S	1	2 .	3 :	1/8	394	381	610	762	914	1219	1524	1829	2134	2438	2743		3658	0.44	5588	7315	8941	99501	13818	. 27271	
8	60	1	900	2 :	/64	610	984	1343	1419	1495	1645	1794	1943	2002	2542	2391		4267	4877	7620	7620	. 029	7925	8230	8230	
	æ	;	31.0	2	311							1219						1829		2337		_			5893	
	≪	1	202		491	621	879	1372	1448	1524	1676	1829	1981	2134	2286	2438		ļ	;	1	1	1	ŧ	1	ı	
	; م		0 09	2	7.0/	152.4	228.6	304.8	457.2	9.609	914.4	1219.2	1524.0	1828.8	2133.6	2438.4		3048	3658	4572	9609	7620	9144	12192	15240	
	م				3 10	6 in	o in	1 ft	1 ft 6 in	2 ft	3 ft	† †	5 ft	6 ft	7 ft	8 f		10 ft	12 ft	15 ft	20 ft	25 ft	30 ft	40 ft	50 ft	

j. 6.4. Dimensiones de medidores Parshall de diseño estandar, según su ancho de garganta

(Water and Sewage Works)

el ancho de garganta del medidor està comprendido entre 0.3048 m y 2.438 m, la corrección obtenida para el de 0.3048 m debe multiplicarse por un factor M de corrección que varía con el tamaño del medidor, según lo indica la tabla de la misma Fig. 6.7d. Un razonamiento semejante vale para tamaños de 3.048 m o más, como se muestra en la Fig. 6.7e.

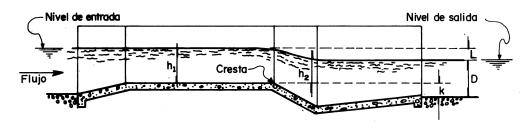
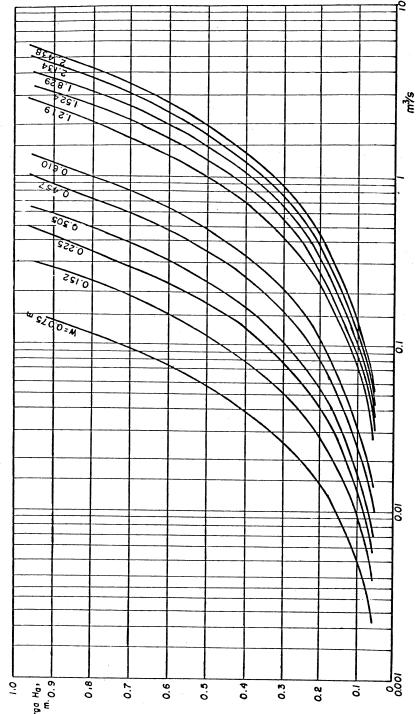



Fig. 6.5 Magnitud de las cargas h_1 y h_2 respecto a la elevación de la cresta del medidor.

Es recomendable localizar la cresta del medidor de modo que la descarga sea libre; si ésto no es posible, es conveniente que el porcentaje de ahogamiento se conserve debajo del límite práctico de 95 por ciento. El tamaño y elevación de la cresta depende del gasto por medir, de las dimensiones del canal en que se va a instalar el medidor y de la pérdida de energía o carga a tra vés del mismo. La pérdida se puede determinar de los diagramas en las Figs. 6.8a y b. Como regla general, el tamaño del medidor más económico corresponde al de un tercio o un medio del ancho del canal en que se efectuarán los aforos.

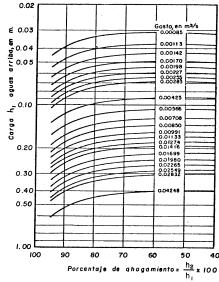


Fig. 6.7a Gasto en condiciones de ahogamiento para medidor Parshall de 0.0762 m 103-D-876. (Colorado State University)

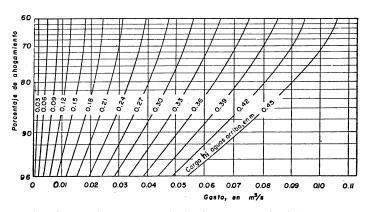


Fig. 6.7b Diagrama para determinar la magnitud del gasto en condiciones de ahogamiento para un medidor Parshall de 0.1524m, 103-D-897 (U.S. Soil Conservation Service)

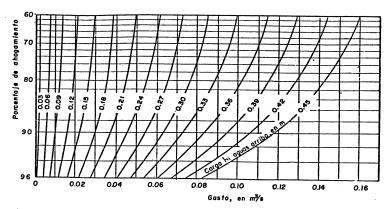


Fig. 6.7c Diagrama para determinar la magnitud del gasto en condiciones de ahogamiento para un medidor Parshall de 0.2286 m, 103-D-898 (U.S. Soil Conservation Service)

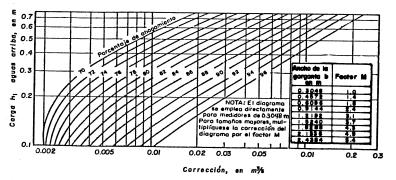


Fig. 6.7d Diagrama para determinar la corrección deducible a la descarga libre, para obtener la descarga ahogada en medidores Parshall, de 0.3048 m a 2.4348 m, 103-D-875. (U.S. Soil Conservation Service)

- 300 -

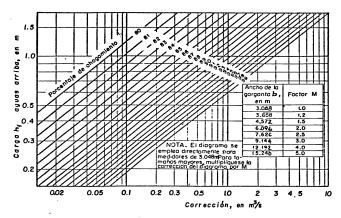


Fig. 6.7e Diagrama para determinar la corrección deducible a la descar ga libre, para obtener la descarga ahogada en medidores Parshall, de 3.048 m a 15.240 m 103-D-882. (Colorado State University)

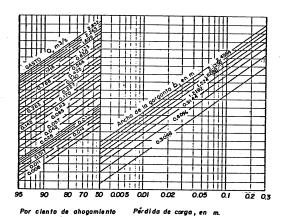
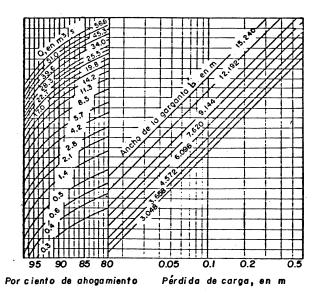



Fig. 6.8a Pérdida de carga en los medidores Parshall para anchos de 0.3048 m a 2.4384 m, 103-D-881 (U.S. Conservation Service)

- 301 -

Fig. 6.8 b Pérdida de carga en medidores Parshall de 3.348 m a 15.240 m de ancho, 103-D-863. (Colorado State Uni-versity).

Ejemplo 6.1. Determine el medidor Parshall más adecuado para efectuar aforos en un canal rectangular de 3.00 m de ancho y un tirante de 0.76 m, donde se espera un gasto máximo de $0.567 \text{ m}^3/\text{s}$.

Solución. De la Fig. 6.6 se concluye que, para una descarga libre, los tamaños comprendidos entre 0.6096 y 2.4384 m son los más adecuados. El tamaño de 1.2192 m es el más económico puesto que la tercera parte del ancho es 1.00 m y la mitad del ancho es de 1.50m. De la Fig. 6.6, $h_1 = 0.35$ m para el tamaño de 1.2192 m. El máximo ahogamiento tolerable para este medidor es $h_2/h_1 = 0.7$, por lo cual $h_2 = 0.245$ m. Para este ahogamiento la superficie del agua en la garganta del medidor en la escala h2 se encuentra esencialmente a nivel con la superficie en el canal aguas abajo, esto es, con el tirante de 0.76 m. Con referencia a la Fig. 6.5, este tirante ocurre en D y la dimensión K = 0.76 - 0.245 = 0.515 m es a la que debe quedar la cresta del medidor sobre el fondo del canal. Se debe no tar que como resultado de esta disposición, puede requerirse un escalón descedente hacia el canal justamente en

el extremo aguas abajo del medidor. Este escalón no in fluye en la medición del gasto y es una condición nor $\underline{\hspace{1cm}}$ mal para muchas instalaciones.

El propio medidor es una obstrucción en el canal y produce un efecto de remanso que se extiende hacia aguas arriba. La diferencia de niveles antes y después de la instalación del medidor corresponde a la pérdida causada por el mismo. De la Fig. 6.8a, la pérdida correspondiente al 70 por ciento de ahogamiento, gasto de 0.576 m 3 /s y medidor de 1.2192 m es hr = 0.13 m, por lo cual el tirante aguas arriba del medidor es de 0.76 + 0.13 = 0.89 m.

Siguiendo el mismo análisis, pero con un medidor de 0.914 m, se obtiene $h_2=0.30$ m, K=0.47 m, L=0.17 m y el tirante aguas arriba de 0.93 m. De manera análoga para un medidor de 0.6096 m: $h_2=0.39$ m, K=0.38 m, hr=0.22 m y el tirante en el canal aguas arriba de 0.98 m.

Si la altura de bordos en el canal puede absorber cualquiera de estas sobreelevaciones, el medidor de 0.6096 m sería obviamente el más económico por su tamaño; sin em bargo, la reducción en el ancho del canal implicaría cos tos grandes en los aleros de la transición para cambiar de 3 m en el canal a 0.6096 m en el medidor, por lo cual, sería más económico cualquiera de los otros dos tamaños.

6.3 Expansiones y Contracciones

6.3.1 Introducción.

Las expansiones y contracciones en canales artificiales constituyen el tramo de unión de dos canales con secciones transversales de forma y dimensiones distintas, a fin de reducir o aumentar la velocidad del flujo e impedir la erosión o depósito de material suelto. Dichas transiciones se diseñan en longitudes relativamente cortas, en las que se producen aceleraciones o desaceleraciones, con el predominio de las fuerzas gravitacionales sobre las de fricción.

El cambio de sección transversal puede ser aumen tando o disminuyendo el área de manera brusca o gradual. Manteniendo o no el régimen, se producen aceleraciones o desaceleraciones según las condiciones de aguas arriba y aguas abajo de la transición. Cuando hay cambio

de régimen subcrítico a supercrítico, se produce siempre una aceleración y una sección de control; cuando se invierte el orden, hay desaceleración y disipación de energía por la formación de un salto hidráulico. En cualquier caso, se presentan turbulencias y posibles separaciones y mezclado del flujo hacia zonas de velocidad diferente, lo cual tiene como consecuencia pérdidas internas en el tramo en que ocurren los cambios de sección y con ello, una caída de la línea de energía en la dirección del es currimiento. En algunos casos es necesario compensar dichas pérdidas por la modificación del nivel de plantila en la zona de transición.

Cuando el área de la sección transversal del canal aumenta en la dirección del movimiento, la transición se conoce con el nombre de expansión o transición divergente. Cuando el área disminuye, se designa como contracción o transición convergente. El escurrimiento en una contracción se acelera al aumentar la velocidad y debido a que la energía total del agua no puede aumentar, la presión hidróstatica de cualquier línea de corriente tiene que disminuir en la dirección del flujo. Los estudios teóricos y experimentales indican que, para esas condiciones, las pérdidas de energía son pequeñas y el escurrimiento no se separa de las paredes. Lo contrario acontece en una expansión, donde hay posibilidad de que la corriente se separe; cuando esto ocurre, las pérdidas de energía son relativamente grandes.

En este subcapítulo sólo se tratan las expansiones o contracciones en las que el régimen se mantiene de subcrítico a subcrítico o de supercrítico a supercrítico. Las transiciones en que hay cambio de régimen se tratan en el capítulo 8.

6.3.2 Cambios de sección en régimen subcrítico

Tratamos aquí las contracciones o expansiones para mantener régimen subcrítico. Estas pueden consistir en transiciones bruscas, logradas mediante un escalón positivo en la plantilla que produce contracción (Fig. 6.9a), y con escalón negativo que produce expansión (Fig. 6.9b). Cuando el cambio de geometría es en planta, hay expansión en el caso de las Figs. 6.9c y d y contracción en el de las Figs. 6.9e y f. Para su tratamiento se considera que el canal es de sección rectangular, piso horizontal o pendiente muy pequeña.

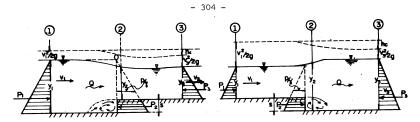
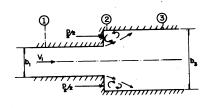



Fig. 6.9a Transición brusca con escalón positivo (contracción)

Fig. 6.9b Transición brusca con escalón negativo (expansión)

g. 6.9c Transición brusca en el ancho (expansión)

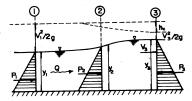


Fig. 6.9d Transición brusca en el ancho (expansión)

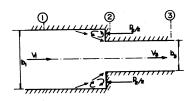


Fig. 6.9e Transición brusca en el ancho (contracción)

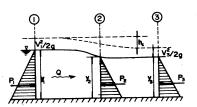


Fig. 6.9f Transición brusca en el ancho (contracción)

Por la aplicación de las ecuaciones de continuidad, energía e impulso y cantidad de movimiento, es factible determinar la magnitud de la pérdida de energía h_C que se produce por efecto del cambio de sección. En este caso, la pérdida de energía se compone de la pérdida por fricción h_f y la pérdida por convexión h_C . La de fricción puede estimarse por medio de una fórmula de fricción (por ejemplo, la de Manning); usualmente tiene poco efecto y puede ignorarse en un diseño preliminar. La pérdida por convexión se debe al cambio de velocidad en la transición y es más importante que la de fricción.

En los esquemas presentados en las Figs. 6.9 se indican tres secciones transversales para la aplicación de las tres ecuaciones fundamentales. Para ello esta—blecemos las siguientes hipótesis:

- a) La fuerza de fricción Ff producida en la distancia que separa las secciones 1 y 3 es despreciable, debido a que dicha longitud es pequeña y a que la pared es lisa.
- b) El número de Froude $F_{r_1} = V_1/\sqrt{gy_1}$ en la sección 1 es menor que uno, debido a que el régimen es sub crítico; por tanto, las potencias F_{r_1} o mayores son despreciables.

Las transiciones bruscas producidas por un escalón (positivo o negativo) pueden tratarse simultáneamen te, si se atiende al signo que debe llevar la fuerza P_2 debida a la presión hidrostática sobre el escalón. Para las Figs. 6.9 a y b, la aplicación de la ley de im pulso y cantidad de movimiento (Ec. 1.10) conduce a

$$P_1 - P_2 - P_3 = \frac{\Upsilon Q}{q} (V_3 - V_1)$$

donde se tiene que: $P_1 = \gamma b \ y_1^2/2$, $P_3 = \gamma b \ y_3^2/2$. En el caso de P_2 , se considera variación hidrostática del tirante y_2 sobre el escalón y entonces resulta que:

$$P_{2} = \pm \frac{1}{2} \quad \text{Ybs } (y_{2} - s + y_{2}) = \pm \frac{1}{2} \quad \text{Ybs } (2y_{2} - s) = \pm \frac{1}{2}$$

$$\text{Ybs } (\frac{2y_{2} - s}{y_{1} - y_{3}}) \quad (y_{1} - y_{3})$$

Debido a que en principio se desconoce el tirante y_2 , el paréntesis que lo contiene puede designarse por c y quedaría sujeto a experimentación. Resulta finalmente que:

$$P_2 = +\frac{1}{2} \text{ cYbs } (y_1 - y_3); \text{ el signo a utilizar se}$$

tomaría según el designado para el escalón, como en las Figs. 6.9 a y b. Además, de la ecuación de continui—dad se tiene que: $V_3 = V_1\,y_1/y_3\,$ y Q = V_1 b y_1 . Por tanto, al sustituir y ordenar la ecuación anterior resulta:

$$y_3^2 - y_1^2 + 2F_{r_1}^2 y_1^2 (\frac{y_1}{y_3} - 1) + cs (y_1 - y_3) = 0$$

O bien como sigue:

$$\left(\frac{y_3}{y_1}\right)^3 - c \frac{s}{y_1} \left(\frac{y_3}{y_1}\right)^2 + \left(c \frac{s}{y_1} - 2 F_{r_1}^2 - 1\right) \frac{y_3}{y_1} + 2 F_{r_1}^2 = 0$$

El grado de la ecuación se puede reducir si se divide entre (y_3/y_1-1) , resultando así:

$$\left(\frac{y_3}{y_1}\right)^2 + (1 - c \frac{s}{y_1}) \frac{y_3}{y_1} - 2 F_{r_1}^2 = 0$$

cuya solución es:

$$\frac{y_3}{y_1} = \frac{1}{2} \left[\sqrt{(1 - c \frac{s}{y_1})^2 + 8 Fr_1^2} - (1 - c \frac{s}{y_1}) \right]$$
 (6.3)

En esta ecuación, el coeficiente c puede determinarse sólo experimentalmente. Un valor aproximado se puede obtener si se conoce bien la posición del perfil del agua sobre el escalón. Por ejemplo, suponiendo una distribución hidrostática de presiones del tirante y_1 sobre el escalón, la fuerza P_2 sería:

$$P_2 \simeq \gamma bs \left[\frac{(\pm y_1 + s) \pm y_1}{2} \right] = \frac{1}{2} \gamma bs (\pm 2y_1 + s)$$

Comparando este valor con el anteriormente utili

zado, resultaría que:

$$C \simeq \frac{\pm 2 - s/y_1}{1 - y_3/y_1}$$

donde el signo más se aplicaría al escalón positivo y el menos al negativo. Cuando s = 0; la (6.3) se comvierte en la conocida ecuación del salto hidráulico.

Por otra parte, de la ecuación de energía la pérdida por convexión entre las secciones 1 y 3 sería:

$$h_C = y_1 - y_3 + \frac{V_1^2}{2g} - \frac{V_3^2}{2g} + s$$

siendo $V_1y_1 = V_3y_3$, de aquí se obtiene que:

$$\frac{h_C}{y_1} = 1 + \frac{s}{y_1} - \frac{y_3}{y_1} - \frac{1}{2} F_{Y_1}^2 \left(\frac{1 - (y_3/y_1)^2}{(y_3/y_1)^2} \right)$$
 (6.4a)

donde y_3/y_1 sería el valor obtenido de la Ec. (6.3) y el signo superior correspondería al escalón positivo y el inferior al negativo. Si la pérdida se expresa en la forma $h_C = K V_3^2/2g$, el coeficiente K vale:

$$K = \left(\frac{y_3}{y_1}\right)^2 \left[1 + \frac{2}{F_{r_1}^2} \left(1 - \frac{y_3}{y_1} \mp \frac{s}{y_1}\right)\right] - 1 \qquad (6.4b)$$

La aplicación de la ecuación del impulso y cantidad de movimiento al caso de expansión brusca en el ancho (Figs. 6.9 c y d) conduce a que:

$$P_{1} + P_{2} - P_{3} = \frac{\gamma b_{1} y_{1}^{2}}{2} + \frac{\gamma (b_{3} - b_{1})}{2} y_{2}^{2} - \frac{\gamma b_{3} y_{3}^{2}}{2} =$$

$$= \frac{\gamma Q}{g} (V_{3} - V_{1})$$

Por otra parte, de la ecuación de continuidad se

tiene que:

$$V_3 = \frac{V_1 b_1 y_1}{b_3 y_3}$$
; $Q = V_1 b_1 y_1$

Además de las hipótesis indicadas, al aceptar $y_2 ~~ \mbox{$\searrow$} ~~ y_1$ se tiene que la ecuación anterior se puede escribir como sigue:

$$\frac{b_3}{2} (y_1^2 - y_3^2) = \frac{V_1^2 b_1^2 y_1^2}{g} (\frac{1}{b_3 y_3} - \frac{1}{b_1 y_1}) = F_{r_1}^2$$

$$b_1^2 y_1^3 (\frac{1}{b_3 y_3} - \frac{1}{b_1 y_1})$$

Al ordenar los términos resulta que:

$$\left(\frac{y_3}{y_1}\right)^3 - \left(1 + \frac{2b_1}{b_3} F_{r_1}^2\right) \frac{y_3}{y_1} + 2 \left(\frac{b_1}{b_3}\right)^2 F_{r_1}^2 = 0$$

La solución de esta ecuación es:

$$\frac{y_3}{y_1} = 1 + F_{r_1}^2 \frac{b_1}{b_3} \left(1 - \frac{b_1}{b_3}\right) \tag{6.5}$$

Lo cual puede verificarse por sustitución si se toma en cuenta la hipótesis b.

Por otra parte, de la ecuación de energía la pérdida por convexión entre las secciones 1 y 3 vale:

$$h_C = y_1 - y_3 + \frac{V_1^2}{2g} - \frac{V_3^2}{2g}$$

De la que, al sustituir V_3 de la ecuación de continuidad, se obtiene

$$h_{C} = \frac{2g y_{1}}{V_{1}^{2}} \frac{V_{1}^{2}}{2g} \left(1 - \frac{y_{3}}{y_{1}}\right) + \frac{V_{1}^{2}}{2g} \left[1 - \left(\frac{b_{1}}{b_{3}}\right)^{2} \left(\frac{y_{1}}{y_{3}}\right)^{2}\right]$$

o bien:

$$h_C = \frac{{V_1}^2}{2g} \left[1 + \frac{2}{F_{11}^2} \left(1 - \frac{y_3}{y_1} \right) - \left(\frac{b_1}{b_3} \right)^2 + \left(\frac{y_1}{y_3} \right)^2 \right]$$

Sustituyendo aquí la Ec. (6.5) y tomando en cuenta la hipótesis b, al hacer las simplificaciones necesa-

rias se obtiene finalmente:

$$h_C = \frac{V_1^2}{2g} \left[(1 - \frac{b_1}{b_3})^2 + 2 F_{r_1}^2 (\frac{b_1}{b_3})^3 (1 - \frac{b_1}{b_3}) \right]$$
 (6.6)

El último término dentro del paréntesis de la Ec. (6.6) contiene a $F_{r_1}^2$, y no tiene mucha influencia en el valor de h_C a menos que $F_{r_1} > 0.5$, o bien que $b_1/b_3 > 0.67$. Esta condición, a menudo, no se satisface plenamente, por lo que es factible simplificar la Ec. (6.6) aceptando que dicho término desaparezca, de manera que:

$$h_C = (1 - \frac{b_1}{b_3})^2 \frac{V_1^2}{2g} = (\frac{b_3}{b_1} - 1)^2 \frac{V_3^2}{2g} = \frac{(V_1 - V_3)^2}{2g}$$
 (6.7)

ya que de la Ec. (6.5): $y_1 = y_2 = y_3$ cuando F_{r1} tiende a cero. La Ec. (6.7) coincide con la fórmula de Borda, para la pérdida de energía en la ampliación brusca de un conducto a presión y se recomienda como más segura para los casos normales. En efecto, los experimentos de Formica (Ref. 30) indican una pérdida en expansiones bruscas 82 porciento del valor dado por la Ec. (6.7); esto es:

$$h_{C} = \varepsilon \frac{(V_{1} - V_{3})^{2}}{2g}$$
 (6.8)

donde $\varepsilon = 0.82$

Es factible realizar un análisis similar al anterior para una contracción brusca y derivar una ecuación análoga a la (6.6) (Ref. 24); la diferencia en di cho análisis consiste en usar la sección 2 en la vena contraída justo aguas abajo de la entrada al canal más angosto y la 3 donde ya se hubiera uniformizado el flu jo también aguas abajo. De cualquier manera, es necesario corregir el resultado ya que se desconoce el ancho efectivo de la sección 2.

De manera análoga a los conductos forzados, la pérdida de energía en una expansión brusca se puede reducir considerablemente si la expansión se realiza de

manera gradual, disminuyendo el ángulo de divergencia. Sin embargo, la longitud de la expansión gradual tiene un límite a partir del cual el aumento en eficiencia llega a ser insignificante,

Las expansiones graduales en canales rectangula res fueron estudiadas experimentalmente en Santiago de Chile, por Mathaei y Lewin en 1932, (Ref. 24), quienes encontraron que es factible generalizar la Ec. (6.8) al caso de expansiones graduales con valores de ε dependientes del ángulo θ con que se realiza la expansión y en menor grado, de la relación de anchos b₃/b₁ según se muestra en la Fig. 6.10a. Esto fue confirmado por Formica (Ref. 30), si bien en este caso no se estu dió la dependencia con b_3/b_1 . Ambos resultados se presentan en la Fig. 6.10a en la que se aprecian tendencias de variación similares, si bien con discrepancias en los valores de E hasta del 50 porciento. La Fig. 6.10b muestra valores de ε para otras formas de expansión estudiadas por Formica, que complementan lo anterior.

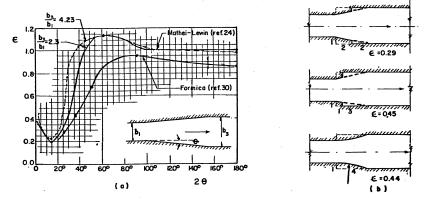


Fig. 6.10 Coeficientes de pérdida E en expansiones a régimen subcrítico.

Las expansiones graduales con relaciones de ampliación 1:4(2 θ =28°, ε =0.27) a 1:7.6 (2 θ =15°, ε =0.2) son las que tienen el coeficiente de pérdida mínimo. Hinds recomienda utilizar 2θ =25° para diseñar la expan sión; sin embargo, es recomendable usar la relación 1.4, debido a que no se obtiene una reducción sensible de la pérdida al aumentar la longitud. La forma exacta de las paredes de la transición no es de importancia siempre que siga curvas razonablemente regulares evitando aristas agudas, como se muestra en la Fig. 6.11a. La Fig. 6.11b presenta la forma que podría tener la expansión equivalente con relación 1:4, para cambiar de ca nal trapecial a rectangular, donde la superficie de la pared es alabeada. En ambos casos, la pérdida puede calcularse con la Ec. (6.8) y los valores de que indican las Figs. 6.11.

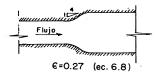


Fig. 6.11a Expansión en un ca nal rectangular a régimen subcrítico

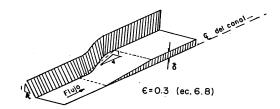


Fig. 6.11b Expansión alabeada de canal trapezoidal a rectangular

Otras formas de expansión se pueden realizar de la manera que señala la Fig. 6.12. Para estos tipos de geometría, Mostkow y Chow (Ref. 31y2) proponen calcu—lar la pérdida en términos del cambio en la carga de velocidad antes y después de la expansión, mediante la fórmula:

$$h_C = c_O \left(\frac{V_1^2 - V_3^2}{2g}\right) = c_O \left[\left(\frac{A_3}{A_1}\right)^2 - 1\right] \frac{V_3^2}{2g} = K \frac{V_3^2}{2g}$$
 (6.9a)

donde A_1 y A_3 son las áreas de las secciones aguas arriba y aguas abajo de la expansión respectivamente. Según Mostkow, el coeficiente co se mantiene prácticamente constante entre 0.35 y 0.40. Según Chow, co depende de la forma de la expansión como indica la Fig. 6.12, alcanzando el valor de 0.75 en la expansión brusca. Para estos casos, la longitud de la expansión se calcula siguiendo el criterio de Hinds de utilizar un ángulo de divergencia $2\theta=25^{\circ}$ entre la proyección horizontal del nivel del agua en las secciones aguas arriba y aguas abajo de la transición. Formas de transición más complicadas, como la de cambiar la sección del túnel circular a un canal rectangular, pueden diseñarse utilizando superficies de manto de cono.

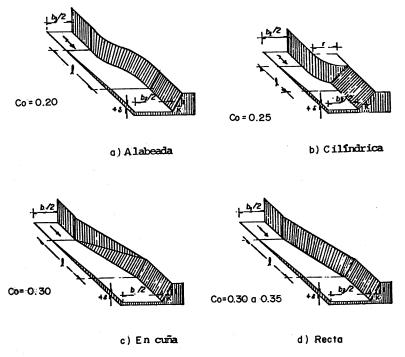


Fig. 6.12 Tipos de expansión y coeficientes de pérdida aplicables a la Ec. (6.9a)

Conviene insistir en que los resultados antes señalados se aplican a expansiones con paredes lisas. Si la pared tiene rugosidades importantes, es necesa—rio agregar la pérdida por fricción, calculada a par—tir de las características hidráulicas medias en el tramo.

En el caso de contracciones es necesario evitar un estrangulamiento excesivo más allá del que permitan las condiciones de régimen crítico aguas abajo, como resultaría de la Fig. 3.7 en el caso de disminuir dema siado el ancho del canal, aumentando excesivamente el gasto unitario.

Los resultados experimentales de G. Formica en contracciones rectangulares bruscas muestran para ellas pérdidas de energía mayores que para las expan—siones bruscas. Ello se debe a que en las contracciones el flujo primero se contrae y después se expande, siguiendo un proceso de conversión primero de energía potencial a cinética y después de cinética a potencial. La pérdida de energía se puede seguir calculando en términos del cambio en la carga de velocidad antes y después de la contracción, como en la Ec. (6.9a), pero escrita como sigue:

$$h_{C} = c_{1} \left(\frac{V_{3}^{2} - V_{1}^{2}}{2g} \right) = c_{1} \left[1 - \left(\frac{A_{3}}{A_{2}} \right)^{2} \right] \frac{V_{3}^{2}}{2g} =$$

$$= K \frac{V_{3}^{2}}{2g}$$
(6.9b)

En la Ec. (6.9b), ci y K son coeficientes de pérdida que dependen de la forma del contorno. Algu—nos valores de K se muestran en la Fig. 6.13 para contracciones rectangulares.

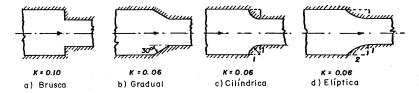


Fig. 6.13 Coeficiente de pérdida K (Ec. 6.9a) en contracciones de un canal rectangular, según Formica (Ref. 30).

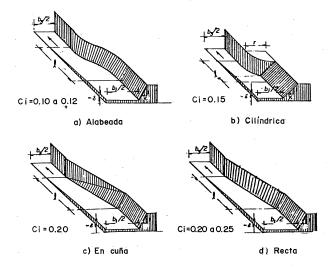


Fig. 6.14 Tipos de contracción y coeficientes de pérdida aplicables a la Ec. (6.9b)

Hinds propone que la contracción de un canal tra pezoidal a un rectangular se realice siguiendo el mismo criterio que se ha indicado para la expansión. Algunas formas geométricas para diseñar estas contracciones se presentan en la Fig. 6.14. Para estos casos Mostkow y Chow indican que el coeficiente ci de la Ec. (6.9b) tie ne los valores indicados en la propia Fig. 6.14 y para una contracción brusca alcanza el valor de 0.30 o más.

Kisieliev (Ref. 32) indica que la pérdida en una contracción alabeada de canal trapecial a trapecial se calcula de la Ec. (6.9b), con K = 0.05 a 0.10.

Por lo que se refiere a la pérdida por contrac—ción a la entrada de un canal, Press (Ref. 33) propone los valores de K que se indican en la Fig. 6.15 de acuerdo con la forma que tenga la entrada, mismos que fueron considerados en la solución del ejemplo 5.1. Otros valores para la entrada a un conducto abovedado se presentan en la tabla 6.6 correspondientes a una alcantarilla.

La pérdida en una expansión o contracción puede cambiar las condiciones del escurrimiento aguas arriba de la transición. Es más, una contracción con una relación b_1/b_3 grande puede "estrangular" el canal y producir sobreelevaciones del tirante en una distancia aguas arriba de la contracción. Para compensar estos cambios es necesario proporcionar un desnivel δ entre el piso de las secciones transversales antes y después de la transición y que se distribuya gradualmente en la longitud de la misma (Fig. 6.14). Dicho desnivel se determina a partir de la ecuación de energía, siendo su magnitud

$$\delta = y_1 + \frac{{V_1}^2}{2g} - (y_3 + \frac{{V_3}^2}{2g} + h_C)$$
 (6.10)

El signo que resulte en esta ecuación define si el piso debe ascender (δ > 0) en la dirección del escurrimiento, o bien descender (δ < 0), como en los casos indicados en las Figs. 6.12 y 6.14. Debe tenerse cuidado que la magnitud de y $_3$ se conserve dentro del régimen subcrítico. Así mismo, es conveniente analizar que en secciones intermedias de la transición no se presenten tirantes iguales o menores que el crítico.

Esta situación podría ocurrir en contracciones donde el cambio de sección es importante.

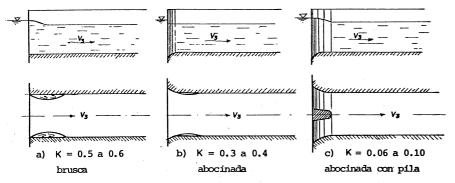


Fig. 6.15 Coeficientes de pérdida por entrada a un canal (en la ec. 6.9a) (ref. 33)

En cualquier caso, ho debe incluir no sólo el va lor de la pérdida por convexión, sino también el de la pérdida por fricción del tramo en que se diseña la transición.

Ejemplos 6.2. Un túnel de sección rectangular de 4 m de ancho de plantilla y tirante de 4.63 m, conduce un gasto de 50 m $^3/s$, para continuar hacia un canal de sec ción trapezoidal de 4.50 m de ancho de plantilla, talud k=1 y tirante de 3.50 m. La transición entre am bas estructuras tiene un revestimiento cuyo factor de fricción de Manning es n = 0.018. Determinar la geometría completa de la transición, el perfil de la superficie libre del aqua y de la línea de energía a lo largo de la misma.

Solución. El área hidráulica al principio de la transición (corresponde a la del túnel) vale: $A_1 = 4x4.63 =$ 18.52 m², su perimetro mojado es:

 $Pi = 4 + 2 \times 4.63 = 13.26 \text{ m},$

la velocidad media: $V_1 = 50/18.52 = 2.70$ m/s, la carga de velocidad: $V_1^2/2g = 0.372$ m

y la energía específica: $E_1 = 4.63 + 0.372 = 5.002 \text{ m}$.

De la misma manera, la sección final de la transición corresponde al canal y las magnitudes correspondientes son: A₃ = $(4.50 + 3.50) 3.5 = 28 \text{ m}^2$,

$$P_3 = 4.5 + 2 \sqrt{2} \times 3.5 = 14.399 \text{ m}, V_3 = 1.786 \text{ m/s}, V_3^2/2g = 0.163 \text{ m} \text{ y} E_3 = 3.50 + 0.163 = 3.663 \text{ m}.$$

Los números de Froude, al principio y final de la tran sición respectivamente son:

$$F_{r_1} = 2.70 / \sqrt{9.81 \times 4.63} = 0.4$$

 $F_{r_3} = 1.786 / \sqrt{9.81 \times 4.63} = 0.4$

éste último calculado con el tirante medio de la sec ción. Estos valores muestran que la transición se va a realizar para unir dos canales a régimen subcrítico, esto es, manteniendo el régimen.

Siguiendo el criterio de Hinds, la longitud mínima de la transición es:

$$1 = \frac{B_{\$} - B_{1}}{2 \tan 12^{\circ}30'} = \frac{(4.5 + 2 \times 1 \times 3.5) - 4}{2 \tan 12^{\circ}30'} = 16.915 \text{ m}$$

Se elige una longitud de 17 m y para el análisis del perfil de la superficie del agua se utilizan 5 tramos de 3.40 m de longitud.

Puesto que las dimensiones de la sección aumentan en el sentido del flujo, se trata de una expansión, eligiendo un diseño recto del tipo mostrado en la Fig. 6.12d. En este caso, la pérdida por convexión se determina de la Ec. (6.9a) en la que $C_0 = 0.30$:

$$h_C = 0.30 \left[\left(\frac{28}{18.52} \right)^2 - 1 \right] 0.163 = 0.063 \text{ m}$$

La pérdida de fricción se puede calcular mediante la fórmula de Manning, utilizando la pendiente media de fricción. Esto es, para el túnel, se tiene que:

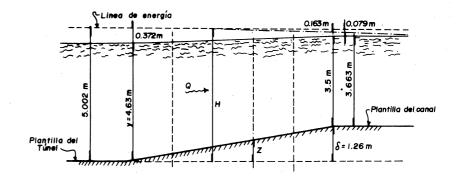
$$S_{f_1} = \left(\frac{2.7 \times 0.018}{(18.52/13.26)^2/3}\right)^2 = 0.001513$$

y para el canal resulta que:

$$S_{f_3} = (\frac{1.76 \times 0.018}{(28/14.399)^2/3})^2 = 0.000426$$

y la pérdida de fricción es:

$$h_f = (\frac{0.001513 + 0.000426}{2}) 17 = 0.0165$$


La pérdida total vale $h_{r}=0.063\,+\,0.0165\,=\,0.079\,\,\text{m}$ y de la ec. (6.10) el desnivel total para compensar dicha pérdida resulta:

$$\delta = 5.002 - (3.663 + 0.079) = 1.26 \text{ m}$$

El signo positivo para δ indica que el piso del canal debe ascender en el sentido del flujo. También es posible diseñar dicho ascenso mediante un perfil suave, logrado mediante una parábola que revierta alrededor del punto medio de la transición y vértices en la entrada y salida; sin embargo, su trazo puede presentar algunas dificultades durante su construcción. En ese caso es preferible que dicho ascenso se logre con un perfil recto de pendiente constante.

El análisis del perfil de la línea de energía y de la superficie libre del agua en la transición, se realiza utilizando 5 tramos de 3.40 m de longitud y consideran do que la pérdida total se reparte proporcionalmente en dichos tramos. El ancho de plantilla y el talud va ría también linealmente a lo largo de la transición, para tener una superficie alabeada en las paredes del ca nal. La Fig. 6.16 muestra estas consideraciones.

De esta manera, la línea de energía desciende uniforme mente una cantidad igual a 0.079/5 = 0.0158 m y la ta-

Distancia en m	3.4	3.4	3.4	3.4	3.4	
Ancho de plan-O tilla en m. 4	4.1	4.2	4.3	4.4	4.5	
Talud, K O	0.2	0.4	9.0	8.0	1.0	
Zen m. O	325	504	7560.6	8.0800,1	1.261.	
Altura H & de la línea de O energía en m. 16	4.986	4.970	4.955	4.939	4.923	
Energía လ específica 8 en m. ທ່	4.734	4. 466	4.199	3.931	3.663	
Tirante en m. 9	4.480	4.266	4.025	3.769	3.50	
Anchode superficie ⊗ libre en m. ∜	5.892	7.613	9.130	10.430	11.500	
						- गगगुग-
				.,,,		=
	2m		B/2	b/2		2.25m Eje de

Fig. 6.16 Transición del ejemplo 6.2

bla de la Fig. 6.16 indica la altura H de la línea de energía en cada sección, medida a partir del nivel de plantilla de la sección final del túnel.

Conocida la altura z del piso de la transición en cada sección (medida desde el piso de la sección final del túnel); se puede calcular la energía específica en la misma como sigue:

$$E = H - z$$

Mediante un proceso iterativo se determina el tirante en cada sección para cada energía específica que resulte. Finalmente, el ancho de la superficie libre en cada sección resulta:

$$E = b + 2 k y$$

Estos resultados se presentan en la Fig. 6.16.

Ejemplo 6.3. Un canal trapezoidal tiene 5.50 m de ancho de plantilla y talud k = 2, excavado en tierra con n = 0.018 (Manning) y para una pendiente S_0 = 0.00025, tiene un tirante normal en flujo uniforme y_0 = 1.31 m. Por razones topográficas se hace necesario continuarlo sobre un puente canal de sección rectangular con 3.80 m de ancho de plantilla y gran longitud, construído de concreto con n = 0.014 (Manning) y una pendiente S_0 = 0.0009. Una vez terminado el puente - canal, el escurrimiento debe continuar por un canal con la misma sección que el primero, pero con una pendiente S_0 = 0.0004, manteniendo n = 0.018. Diseñar la geome tría de las transiciones de entrada y salida al puente-canal y calcular el perfil que adopta la superficie libre del agua en las mismas.

Solución. Las propiedades geométricas del canal aguas arriba son:

$$A = (5.50 + 2 \times 1.31) 1.31 = 10.6372 \text{ m}^2$$

$$P = 5.50 + 2 \sqrt{1 + 2^2} \times 1.31 = 11.3585 \text{ m}$$

$$R_h = 0.9365 \text{ m}$$

La velocidad y gasto en el canal son entonces:

$$V = \frac{1}{0.018} (0.9365)^{2/3} (0.00025)^{1/2} = 0.8408 \text{ m/s}$$

$$Q = 10.6372 \times 0.8408 = 8.9439 \text{ m}^3 / \text{s}$$

Para el cálculo del tirante crítico en el canal, se tiene que:

$$\frac{Qk^{3/2}}{b^{5/2}\sqrt{g}} = \frac{8.9439 \times 2^{3/2}}{5.50^{5/2}\sqrt{9.81}} = 0.1139$$

y de la Fig. 3.9 se obtiene que: $k y_C/b = 0.218$, o sea que:

$$y_C = \frac{0.218 \times 5.50}{2} = 0.5995 \text{ m} < 1.31$$

Por tanto, el régimen es subcrítico.

Suponiendo que el tirante normal en el puente-canal fuera y_0 = 1.304 m, las propiedades geométricas de la sección serían:

$$A = 3.80 \times 1.304 = 4.9552 \text{ m}^2$$

$$P = 3.80 + 2 \times 1.304 = 6.408 \text{ m}$$

$$R_h = 0.7733 \text{ m}$$

La velocidad y gasto serían entonces:

$$V = \frac{1}{0.014} (0.7733)^{2/3} (0.0009)^{1/2} = 1.8053 \text{ m/s}$$

$$Q = 4.9552 \times 1.8053 = 8.9457 \text{ m}^3/\text{s} \approx 8.9439$$

El gasto calculado coincide prácticamente con el gasto

en el canal, por lo cual el tirante normal $y_0=1.304~m$ (supuesto) es correcto. Por otra parte, con un gasto unitario: $q=8.9439/3.80=2.3537~m^3/seg/m$, el tirante crítico es:

$$y_{\rm C} = \sqrt[3]{\frac{2.3537^2}{9.81}} = 0.827 \text{ m} < 1.304 \text{ m}$$

Por tanto, el régimen en el puente-canal es también subcrítico.

De la misma manera, para el canal aguas abajo del puen te-canal suponemos que su tirante normal es $y_0=1.154\,\mathrm{m}$ y las propiedades geométricas:

A =
$$(5.50 + 2 \times 1.154) 1.154 = 9.0104 \text{ m}^2$$

P = $5.50 + 2 \sqrt{1 + 2^2} 1.154 = 10.6608 \text{ m}$
Rh= 0.8452 m

La velocidad y el gasto serían:

$$V = \frac{1}{0.018} (0.8452)^{2/3} (0.0004)^{1/2} = 0.9933 \text{ m/s}$$

 $Q = 9.0104 \times 0.9933 = 8.9496 \text{ m}^3/\text{s} \approx 8.9439 \text{ m}^3/\text{s}$

Lo que significa que el tirante normal $y_0 = 1.154 \text{ m}$ (supuesto) es correcto; además, es mayor que el crítico, por lo que el régimen es también subcrítico.

Longitud de las transiciones. La transición de salida será una expansión alabeada, cuya longitud se podría obtener con la relación de convergencia de la Fig. 6.11b, con la salvedad de que dicha relación se refiere a los anchos que se tengan al nivel de la superficie del agua. Esto es, la longitud resulta:

$$1 = 4 \left[\left(\frac{b_3}{2} + k y_3 \right) - \frac{b_1}{2} \right] =$$

$$4\left[\left(\frac{5.50}{2} + 2 \times 1.154\right) - \frac{3.80}{2}\right] = 12.632 \text{ m}$$

De la misma manera, para la transición de entrada (con tracción) la longitud, con el mismo criterio, vale:

$$1 = 4 \left[\left(\frac{5.50}{2} + 2 \times 1.31 \right) - \frac{3.80}{2} \right] = 13.88 \text{ m}$$

Como en el caso de la contracción el ángulo de convergencia adquiere menos importancia que en la expansión, elegimos la longitud de 12.632 m para ambas transiciones con el fin de obtener diseños geométricos similames.

Pérdida de energía. En el caso de la transición de entrada, la pérdida total de energía -incluída la de fricción- con la Ec. (6.9b) resulta:

$$h_{C} = c_{1} \left[1 - \left(\frac{A_{3}}{A_{1}}\right)^{2} \right] \frac{V_{3}^{2}}{2g} + \frac{Sf_{1} + Sf_{3}}{2} 1$$

De la Fig. 6.14a c_i vale 0.12, siendo la pérdida total como sigue:

$$h_C = 0.12 \left[1 - \left(\frac{4.9552}{10.6372} \right)^2 \right] \frac{1.8053^2}{19.62} + \frac{0.00025 + 0.0009}{2}$$

$$\times 12.632 = 0.016 + 0.007$$

$$h_C = 0.023 \text{ m}$$

De acuerdo con la Ec. (6.10), para compensar la pérdida y el cambio de sección el desnivel en el piso es

$$\delta = 1.31 + \frac{0.8408^2}{19.62} - (1.304 + \frac{1.8053^2}{19.62} + 0.023) = -0.147 \text{ m}$$

Este resultado implica que la plantilla al inicio del puente-canal, debe tener un desnivel de 0.147 m por de bajo del piso del canal aguas arriba. Este desnivel se repartirá uniformemente a lo largo de la transición.

Para la transición de salida, $c_0 = 0.20$ en la ec.(6.9a); en este caso la pérdida total vale:

$$h_C = 0.20 \left[\left(\frac{9.0104}{4.9552} \right)^2 - 1 \right] \frac{0.9933^2}{2g} + \frac{0.0009 + 0.0004}{2} \times 12.632$$

$$h_C = 0.023 + 0.008 = 0.031 m$$

Finalmente, de la Ec. (6.10) resulta:

$$\delta = 1.304 + \frac{1.8053^2}{19.62} - (1.154 + \frac{0.9933^2}{19.62} + 0.031) = 0.235 \text{ m}$$

Ahora resulta signo positivo para δ , lo que implica que el piso al inicio del canal aguas abajo debe quedar por encima del piso de la sección final del puente canal. El desnivel se distribuirá a lo largo de la transición.

Por lo que se refiere al bordo libre, se sigue el mismo criterio de la Fig. 2.16, de la cual, para el gasto calculado resulta un bordo libre total de 0.80 m y una altura del revestimiento de 0.30 m.

Diseño geométrico de la transición de entrada. Para reducir gradualmente el ancho de plantilla y de bordos, se utilizan arcos de círculo, tangentes en un punto co

locado a una distancia de $3\ell/8$ para la de entrada y de $5\ell/8$ para la de salida, desde el inicio de la misma, como se indica en la Fig. 6.17a.

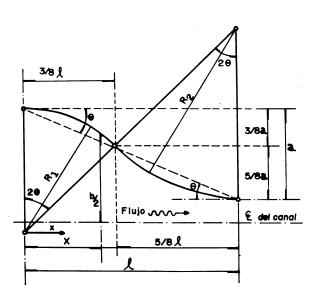


Fig. 6.17a Diseño geométrico en planta de la transición de entrada en el ejemplo 6.3.

De la figura 6.17a resulta que:

$$\tan \theta = \frac{3a/8}{3\sqrt{9}/8} = \frac{a}{\sqrt{9}}$$

$$\tan 2\theta = \frac{3l/8}{R_1 - \frac{3a}{8}}$$

siendo además:

$$\tan 2 \theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

resulta entonces que:

$$R_1 = \frac{3}{16} \left(\frac{L^2}{a} + a \right)$$

Por un desarrollo análogo se obtiene que:

$$R_2 = \frac{5}{16} \left(\frac{\mathbf{L}^2}{a} + a \right)$$

Estos resultados se pueden utilizar para el diseño en planta, tanto de la traza de la plantilla como de los bordos. En el caso de la plantilla se tiene que:

$$a = \frac{5.50 - 3.80}{2} = 0.85 \text{ m}; \quad \mathcal{L} = 12.632 \text{ m}$$

$$R_1 = \frac{3}{16} \left(\frac{12.632^2}{0.85} + 0.85 \right) = 35.358 \text{ m}$$

$$R_2 = \frac{5}{16} \left(\frac{12.632^2}{0.85} + 0.85 \right) = 58.930 \text{ m}$$

Con estos valores de los radios, se puede obtener la variación del ancho de plantilla mediante las siguientes ecuaciones:

$$\frac{b}{2} = \sqrt{35.358^2 - x^2} - 32.608$$
 para $0 \le x \le 4.737$ m

$$\frac{b}{2} = 60.830 - \sqrt{58.930^2 - (12.632 - x)^2}$$
para $4.737 \le x \le 12.632$ m

donde $3\ell/8 = 4.737 \text{ m}$

De la misma manera, para los bordos:

$$a = \frac{5.50 + 2 \times 2 (1.31 + 0.80) - 3.80}{2} = 5.07 \text{ m}$$

$$R_i = \frac{3}{16} \left(\frac{12.632^2}{5.07} + 5.07 \right) = 6.852 \text{ m}$$

$$R_2 = \frac{5}{16} \left(\frac{12.632^2}{5.07} + 5.07 \right) = 11.42 \text{ m}$$

$$\frac{b}{2} = \sqrt{6.852^2 - x^2} + 0.118$$
 para $0 \le x \le 4.737$ m

$$\frac{b}{2}$$
 = 13.32 - $\sqrt{11.42^2 - (12.632 - x)^2}$

para
$$4.737 \le x \le 12.632$$

Diseño geométrico de la transición de salida. La geometría se diseña de manera similar a la anterior y en planta se presenta en la Fig. 6.17b.

Debido a que "a" es igual que en la transición de en trada, los radios para la plantilla son los mismos para esta transición. Es decir:

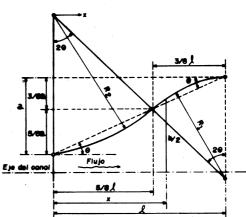


Fig. 6.17b Diseño geométrico en planta de la transición de salida en el ejemblo 6.3.

$$\mathcal{L}$$
 = 12.632 m
 R_1 = 35.358 m
 R_2 = 58.930 m
 $\frac{b}{2}$ = 37.258 $-\sqrt{35.358^2 - x^2}$
para $0 \le x \le 4.737$ m
 $\frac{b}{2}$ = $\sqrt{58.93^2 - (12.632 - x)^2}$
 -56.18

a = 0.85

En el caso de los bordos, el valor de a difiere del obtenido en el caso anterior. Ahora vale:

para 4.737 < .x < 12.632 m

$$a = \frac{5.50 + 2 \times 2(1.154 + 0.80) - 3.80}{2} = 4.758 \text{ m}$$

$$R_1 = \frac{5}{16} \left(\frac{12.632^2}{4.758} + 4.758 \right) = 11.967 \text{ m}$$

$$R_2 = \frac{3}{16} \left(\frac{12.632^2}{4.758} + 4.758 \right) = 7.180 \text{ m}$$

$$\frac{b}{2} = 13.867 - \sqrt{11.967^2 - x^2} \text{ para } 0 < x < 7.895 \text{ m}$$

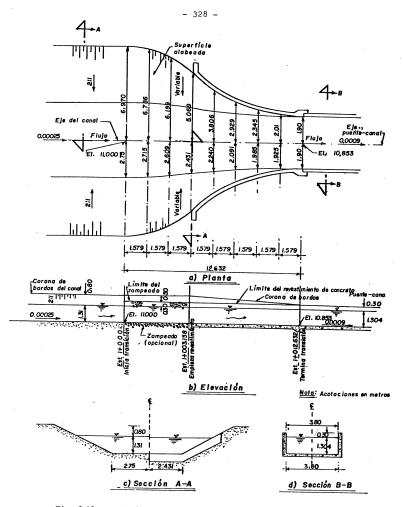


Fig. 6.18 Transición de entrada del ejemplo 6.3

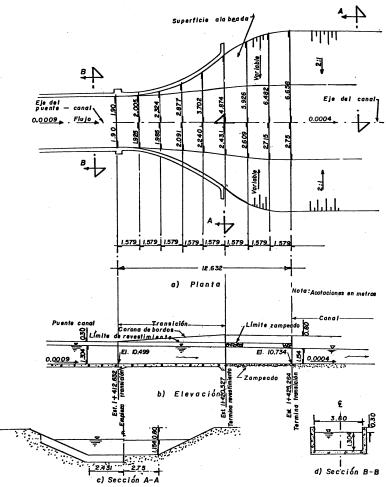


Fig. 6.19 Transición de salida del ejemplo 6.3

$$\frac{b}{2} = \sqrt{7.180^2 - (12.632 - x)^2} - 0.522$$
para $7.895 \le x \le 12.632 \text{ m}$

Las Figs. 6.18 y 6.19 muestran la geometría completa de las transiciones de entrada y salida.

6.3.3 Cambios de sección en régimen supercrítico

6.3.3.1 Teoría de la onda oblicua. Cuando se modifica la alineación de la pared lateral de un canal con flujo a régimen supercrítico, se produce una onda estacio naria que incrementa bruscamente el tirante (onda positiva) a lo largo del frente cuando la deflexión acerca la pared al escurrimiento (Fig. 6.20a), esto es, la pared lateral deflecta hacia el interior del escurrimiento, o lo disminuye (onda negativa) cuando aleja la pared del escurrimiento (Fig. 6.20b), esto es, la pared deflecta hacia el exterior. En ambos casos, la onda es superficial, estacionaria, oblicua y se prolonga ha cia aguas abajo, siendo similar a la onda de Mach típica del flujo supersónico de un gas.

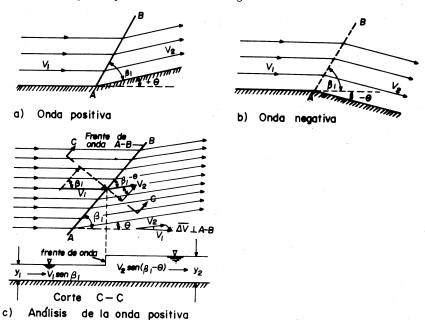


Fig. 6.20 Frente de onda oblicua estacionaria

El análisis de la onda oblicua positiva se rea liza bajo la hipótesis de un canal horizontal. La Fig 6.20c muestra las características del flujo cuando ocu rre una onda positiva que forma el ángulo β_1 con la dirección original de la corriente. Esta deflecta el ángulo θ y crece su tirante de y_1 a y_2 , a lo largo del frente A - B de la figura. Antes y después del frente de onda, la velocidad tiene componentes tangencial y normal al mismo. La componente tangencial debe ser igual a ambos lados del frente debido a que éste no mo difica su posición y con ello dicha componente define a la celeridad de la onda. Lo anterior implica que:

$$V_1 \cos \beta_1 = V_2 \cos (\beta_1 - \theta)$$
 (6.11)

Por otra parte, al considerar las componentes de velocidad normales al frente de onda, la ecuación de continuidad es:

$$V_1 \ y_1 \ \text{sen} \ \beta_1 = V_2 \ y_2 \ \text{sen} \ (\beta_1 - \theta)$$
 (6.12a)

De la definición de número de Froude (al sustituir a la velocidad $V = Fr \sqrt{gy}$), la ecuación anterior también se puede escribir como sigue:

$$\frac{F_{r_2}}{F_{r_1}} = \frac{\text{sen } \beta_1}{\text{sen } (\beta_1 - \theta)} (\frac{y_1}{y_2})^{3/2}$$
 (6.12b)

Además, dividiendo la Ec. (6.12a) entre la (6.11) y despejando y_2/y_1 , resulta que:

$$\frac{y_1}{y_2} = \frac{\tan \beta_1}{\tan (\beta_1 - \theta)} \tag{6.13}$$

El establecimiento de la ecuación de momentum, por unidad de longitud de onda y en dirección perpendicular al frente de la misma, conduce a que:

$$\frac{y_2^2 - y_1^2}{2} = \frac{q}{g} \left[V_1 \text{ sen } \beta_1 - V_2 \text{ sen } (\beta_1 - \theta) \right]$$

O bien, si se toma en cuenta la Ec. (6.12a) y se simplifica, resulta que:

$$\left(\frac{y_2}{y_1}\right)^2 + \frac{y_2}{y_1} - 2 F_{r1}^2 sen^2 \beta_1 = 0$$

cuya solución es:

$$\frac{y_2}{y_1} = \frac{1}{2} \quad (\sqrt{1 + 8 \, \text{Fr}^2 \, \text{sen}^2 \, \beta_1} - 1) \tag{6.14}$$

Si en la ecuación anterior $\beta_1 = 90^\circ$, la resultante coincide con la ecuación ordinaria del salto hidráulico en canales rectangulares (Ec. 4.7) y el frente de onda se sitúa en dirección perpendicular al flujo. La Ec. (6.14) se puede también expresar como sique:

Al eliminar $y_2/y_1\,$ en las Ecs. (6.13) y (6.14), se tiene que:

$$\tan \theta = \frac{\tan \beta_1(\sqrt{1+8} \text{ Fri}^2 \text{ sen}^2 \beta_1 - 3)}{2 \tan^2 \beta_1 + \sqrt{1+8} \text{ Fri}^2 \text{ sen}^2 \beta_1 - 3}$$
 (6.16)

lo que permite obtener el valor de β_1 en términos de $F_{\mathbf{r}_1}$ y θ . Sin embargo, la solución directa de esta ecuación para β_1 en términos de $F_{\mathbf{r}_1}$ y θ , es prácticamente imposible. Para eliminar este problema, Ippen (Ref. 34) preparó las gráficas en cuatro cuadrantes de la Fig. 6.21 que resuelve simultáneamente las relaciones indicadas por las ecs. (6.13) a (6.16) y que pueden usarse para la solución en la teoría de la onda oblicua.

La observación de la Fig. 6.21 permite obtener las siguientes características:

- 1) Para cada valor de F_{ri} , existe un máximo para θ que se localiza en la proximidad de la lí—nea divisoria entre régimen supercrítico y subcrítico, esto es, para $F_{r_2}=1$.
- 2) Con excepción del máximo, para todos los valores posibles de θ se obtienen dos de β_1 , siendo de interés práctico el menor que corresponde a $F_{r2} > 1$. El valor mayor de β_1 para $F_{r2} < 1$ es poco importante debido a que para el flujo subcrítico las condiciones de aguas abajo tienen tanta influencia como la deflexión de la pared.
- 3) Para cada valor F_{r1} , existe un máximo de y_2/y_1 , que corresponde a β_1 = 90° y al caso del salto hidráulico convencional.
- 4) Cuando $\beta_1 = 90^{\circ}$, el ángulo de deflexión θ vale cero para todos los valores de F_{r1} . Esto significa que el salto hidráulico convencional es resultado del control realizado desde aguas abajo y no de una deflexión en la pared.
- 5) A medida que F_{r_1} se aproxima a uno, y_2/y_1 y F_{r_2} también se aproxima a uno, mientras que $\beta_1=90^\circ$ para $\theta=0$. Por otra parte, no existen soluciones reales para $F_{r_1}<1$ y en el caso de régimen crítico, un disturbio de magnitud infinitamente pequeña tiene un ángulo de onda de 90° que equivale a la condición límite.

Como se observa en la Fig. 6.21, la teoría no contempla el caso de relaciones $y_2/y_1 < 1$, esto es, sus aplicaciones prácticas se restringen a una onda obli—cua positiva, formada en un canal de sección rectangular horizontal o con pendiente longitudinal, en el que se presenta flujo esencialmente uniforme antes del cambio angular. Así mismo, la teoría no se puede utili—zar para determinar las condiciones del flujo con ángulo de deflexión negativo, ya que en una onda de este signo no es posible la suposición de distribución hi—drostática de la presión en la proximidad del punto de

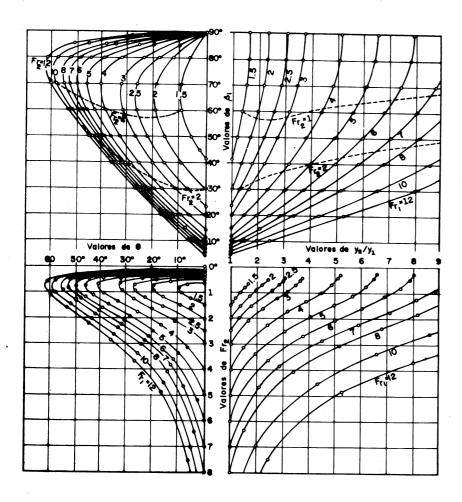
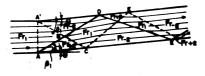


Fig. 6.21 Relaciones generales entre Fr $_1$, 0, β_1 , y_2 / y_1 y Fr $_2$ en la teoría de la onda oblicua (Ref. 2)

deflexión de la pared. Para esta situación y en caso de cambio brusco en la alineación de la pared, se presenta un cambio gradual del tirante y el problema se trata en el inciso 6.3.3.4 como una expansión.


El cambio de tirante, positivo o negativo, solamente puede existir cuando efectivamente se modifica
la alineación de la pared de un canal y no puede ocu—
rrir en caso de una pared rectilínea limpia. Una vez
generada la perturbación, ésta se propaga desde una pa
red a la otra y actúa sobre el flujo modificando la di
rección de sus líneas de corriente para reorientarlas
según la nueva dirección de la pared.

Por otra parte, una onda oblicua rara vez ocurre de manera aislada en un canal ordinario, ya que más bien se desarrollan ondas múltiples por el efecto de otras fuentes de signo opuesto, de reflexiones sobre la pared opuesta y de intersecciones con otros frentes de onda. Los disturbios producidos pueden transmitirse a una distancia considerable hacia aguas abajo y mo dificar fuertemente las características del escurrimien to.

Una onda positiva se produciría en el caso de la deflexión θ de una de las paredes del canal acercán dose al escurrimiento, como en la Fig. 6.22a. El frente de onda se propagaría hacia aguas abajo y se reflejaría sucesivamente en las paredes, de acuerdo con las leyes de reflexión e interferencia. Dicho frente no produciría modificaciones del flujo aguas arriba del mismo, pero hacia abajo crearía campos de número de Froude F_{r2} , F_{r3} , etc. decreciente, ya que el tirante aumentaría progresivamente cada vez que el flujo cruza ra cada frente de onda.

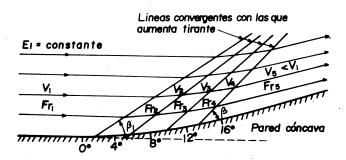
La superposición de efectos por deflexiones simultáneas en la alineación de ambas paredes, como en la Fig. 6.22b produce dos frentes de onda, uno positivo en el punto de inflexión A, el otro negativo en el punto A' (como el de la Fig. 6.20b). Ambos frentes se intersectan en B y continúan reflejándose en las paredes opuestas y con ello crean una conformación de disturbios de ondas positivas y negativas que se suman al gebráicamente en los puntos de intersección. Cuando el flujo cruza el frente positivo generado en A, se re orienta el ángulo θ para seguir la nueva dirección de la pared, incrementa su tirante y crea el campo de

- a) Deflexión angular en una pared produciendo un frente positivo.
- b) Deflexión angular de las dos paredes produciendo frentes positivo y negativo.

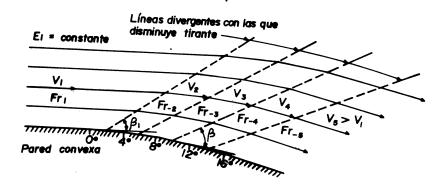
- c) Eliminación de un frente positivo.
- d) Eliminación de un frente nega tivo.

Fig. 6.22 Configuración de los frentes de onda en un canal rectangular con flujo supercrítico, donde cambia la alineación de sus paredes.

números de Froude de F_{r+2} aguas abajo de dicho frente. El frente negativo generado en A' actúa de manera simi lar, pero disminuye el tirante creando el campo de número de Froude de F_{r-} , aguas abajo de dicho frente. El positivo continúa más allá de B y entra en un campo de flujo de características F_{r-2} y lo reorienta en una nueva dirección, con un ángulo β, menor que el original con que se generó dicho frente, deflectando las lí neas de corriente para acercarse a ellas y restablecer las características originales a un campo de número de Fr: aguas abajo del frente BD. A su vez el frente negativo BC entra en el campo de características hidráu licas F_{r+2} y deflecta las líneas de flujo para alinear las aguas abajo del frente en la misma dirección de aquellas que se encuentran aquas abajo del frente BD, restaurando así el flujo al valor original Fri. A lo largo de la pared AC el tirante se eleva, mientras que


entre los puntos A'D, disminuye respecto del valor ori ginal por influencia de los frentes AD y A'C y sus reflexiones. Por consiguiente, a lo largo de las paredes se alternarán tirantes mayores y menores que y_1 , creciendo cuando se trate de puntos de reflexión de on da positiva y disminuyendo cuando lo sean de onda nega tiva. El flujo aguas abajo de los frentes ABA' siem pre estará perturbado a menos que se establezcan cambios angulares adicionales. Los cambios de alineación de las paredes podrían realizarse de tal forma que se eliminen las perturbaciones indeseables. La Fig. 6.22c ilustra la manera en que la onda positiva producida en A se eliminaría en el punto de reflexión B sobre la pa red opuesta, si en dicho punto se produce un cambio angular que aleje la pared del escurrimiento y genere una onda negativa. La Fig. 6.22d muestra una segunda posibilidad, donde la onda negativa que se origina en A' es eliminada por la positiva que se produciría en B si en dicho punto se hace un cambio angular que acerque la pared al escurrimiento y produzca el cambio déseado.

6.3.3.2 Teoría de las perturbaciones pequeñas.


Los cambios angulares de la pared, mostrados en las Figs. 6.2 a y b, se sustituyen ahora por los cambios graduales equivalentes que indican las Figs. 6.23 a y b respectivamente. El cambio gradual se puede suponer que se reemplaza por una secuencia de cuerdas cortas, cada una de las cuales deflecta un pequeño ángulo $\Delta\theta$ respecto de la anterior, como se indica en las Figs. 6.23 para deflexiones de curvatura cóncava o convexa.

En caso de pared cónçava (Fig. 6.23a), cada de flexión $\Delta\theta$ de la pared produce un cambio angular gradual en las líneas de corriente y líneas de perturbación positiva de inclinación cada vez mayor y por tanto convergentes. Dichas líneas producen un crecimiento gradual del tirante en cada intersección y crean campos de flujo de número de Froude decreciente.

En el caso de curvatura convexa (Fig. 6.23b) cada deflexión Δθ de la pared produce líneas de per—turbación negativa de inclinación cada vez menor y por tanto divergentes y a su vez un decrecimiento gradual del tirante en cada intersección, creando así campos de flujo con números de Froude sucesivamente creciente.

a) Frentes de perturbación positiva producidos a lo largo de una pared cóncava.

b) Frentes de perturbación negativa producidos a lo largo de una pared convexa.

Fig. 6.23 Configuración de los frentes de perturbación producidos en la proximidad de la pared de un canal de flujo supercrítico.

Para las condiciones antes señaladas se observa que el tratamiento de las líneas de perturbación, positivas o negativas, difiere del considerado para una deflexión angular de la pared. En este caso se observa un crecimiento o decrecimiento gradual y contínuo del tirante, distinto del cambio brusco estudiado

para la onda oblicua aislada. Para esta situación es factible desarrollar la teoría de las pequeñas perturbaciones aceptando que los frentes de onda se producen por cambios con ángulos de deflexión $\Delta\theta$ pequeños, que inducen incrementos Δy en el tirante también pequeños.

Al existir un disturbio pequeño, y_2/y_1 tiende a uno y de la ec. (6.15) resulta que:

$$sen \beta = \frac{1}{Fr} \tag{6.17}$$

Sustituyendo y por y_1 , a $y + \Delta y$ por y_2 y a $\Delta \theta$ por θ en la Ec. (6.13), se tiene que:

$$\frac{\Delta y}{y} = \frac{\tan \beta (1 + \tan \beta \tan \Delta \theta)}{\tan \beta - \tan \Delta \theta} - 1 = \frac{\sec^2 \beta \tan \Delta \theta}{\tan \beta - \tan \Delta \theta}$$
 (6.18)

Para un ángulo de deflexión pequeño, tan $\Delta\theta$ puede ser reemplazado por $\Delta\theta$, siendo además tan $\Delta\theta <<$ tan β , de modo que la Ec. (6.18) sería:

$$\frac{\Delta y}{\Delta \theta} = \frac{y \sec^2 \beta}{\tan \beta} = \frac{y}{\sin \beta \cos \beta}$$

y al considerar que $\Delta\theta$ tiende a cero y sustituir la Ec. (6.17), se obtiene que:

$$\frac{dy}{d\theta} = \frac{y}{\sin^2 \beta} \quad \frac{\sin \beta}{\cos \beta} = \frac{V^2}{g} \quad \tan \beta$$
 (6.19)

Esta ecuación muestra cómo el tirante se incrementa contínuamente a lo largo de la pared cóncava de la Fig. 6.23a.

Con el fin de simplificar la solución de la Ec. (6.19) y con ello el cálculo de la elevación de la superficie libre del agua, Ippen consideró necesario aceptar las siguientes suposiciones importantes:

- a) El flujo es bidimensional
- b) El canal es horizontal

c) El flujo es sin fricción

Por lo que se refiere a las últimas suposiciones, la solución resultante incluye la aplicación a canales con pendiente si ésta compensa la pérdida por fricción. Por otra parte, la última suposición equivale a que la energía específica E permanece constante y que el flujo es con potencial. Siendo

$$V=\sqrt{2g~(E-y)}$$
, al sustituir en las ecs. (6.17) y (6.19) y eliminar a β , se obtiene que:

$$\frac{dy}{d\theta} = \frac{2 (E-y) \sqrt{y}}{\sqrt{2E-3y}}$$

La solución exacta de esta ecuación es:

$$\theta + \theta_1 = \sqrt{3}$$
 áng $\tan \sqrt{\frac{3y}{2E-3y}}$ -
áng $\tan \frac{1}{\sqrt{3}} \sqrt{\frac{3y}{2E-3y}}$ (6.20)

Puesto que la energía específica vale:

$$E = y + \frac{V^2}{2g} = y + \frac{yFr^2}{2} = y (1 + \frac{Fr^2}{2})$$
 (6.21)

Al sustituir la ec. (6.21) en la (6.20), ésta última también es:

$$\theta + \theta_1 = \sqrt{3}$$
 áng tan $\frac{\sqrt{3}}{\sqrt{F_r^2 - 1}}$ - áng tan $\frac{1}{\sqrt{F_r^2 - 1}}$ (6.22)

La Fig. 6.21 presenta la solución gráfica de la ec. (6.22).

La constante de integración θ_1 se determina de

la Ec. (6.22) o de la Fig. 6.24, a partir de la condición de que para $\theta=0$ el número de Froude es el inicial F_{r_1} . El valor de θ_1 obtenido se mantiene constante en el resto de los cálculos.

En las ecs. (6.20) y (6.22) cada valor de θ determina un valor de y, no sólo sobre la pared si no también a lo largo de una línea radiando desde la misma, como en la Fig. (6.23).

La línea representa a una componente de la serie de frentes de onda, cada uno originado por un cambio pequeño en θ . Para ser consistente con el ángulo β representado en la Fig. 6.20a, éste debe definirse como el ángulo entre la tangente a la curva de la pared y la línea de perturbación como en la Fig. 6.23 y calcularse con la Ec. (6.17). Esto se debe a que el líquido que está próximo a cruzar cada frente de onda en cualquier posición, se mueve paralelo a la tangente a la pared. El tirante se obtiene de la Ec. (6.21) manteniendo la energía específica inicial constante en la zona curva y a partir del número de Froude obtenido de la Ec. (6.22), resultando el máximo en el punto en que termina la pared cóncava y el mínimo en el que termina la pared convexa.

En el caso de la pared convexa en la Fig. 6.23b, cada disminución del tirante corresponde a una línea de perturbación negativa generada por cada deflexión angular Δθ. Los ángulos β decrecen, las velocidades V y los números de Froude aumentan. Debido a que los án gulos β de las líneas de perturbación se producen respecto al flujo precedente, aquellas deben divergir. Aún para un cambio brusco negativo en la alineación de la pared, donde las líneas de perturbación se concentrarían en el punto de deflexión, el cambio de tirante es gradual y la hipótesis de cambio diferencial del ti rante sería entonces aplicable, esto es, sería válido aplicar la teoria de las perturbaciones pequeñas. Ade más, la hipótesis de una distribución hidrostática de presiones utilizada en la teoría de la onda oblicua, no puede ser mantenida en la vecindad del punto de deflexión, ya que en dicho punto la curvatura de las líneas de corriente es teóricamente infinita y la confiquración superficial no concuerda con la experimental. Más bien, a cierta distancia del punto de deflexión, es donde la curvatura de las líneas de corriente decrece y se obtiene mejor precisión en los cálculos.

Finalmente, la teoría de las perturbaciones pe queñas tiene validez en la determinación del tirante a lo largo de una pared cóncava o convexa o de cada lí—nea de perturbación, pero no considera la superposi—ción de los efectos generados por la reflexión de las propias perturbaciones o por la producción de nuevas perturbaciones en la pared opuesta.

Según Ippen y Knapp (Ref. 2), es posible obtener resultados adecuados por una ecuación más simple que las Ecs. (6.20) ó (6.22) y que se obtiene de aceptar la hipótesis de que la velocidad V permanece constante en toda la zona de curvatura de la pared, en vez de energía específica constante. De la Ec. (6.19) resulta que:

$$\frac{y}{y_1} = Fr_1^2 \quad \text{sen}^2 \quad (\beta_1 + \frac{\theta}{2})$$
 (6.23)

siendo desde luego también válida la Ec. (6.17). La Ec. (6.23) conduce a resultados un poco inferiores que los proporcionados por la Ec. (6.20) o la (6.22), siendo útil para cálculos aproximados.

6.3.3.3 Diseño de contracciones

En el diseño de una contracción en régimen supercrítico es posible llegar al punto de estrangular con exceso el ancho de la sección aguas abajo. Al igual que en régimen subcrítico, un primer mecanismo de estrangulamiento consiste en que se eleve el tirante aguas abajo hasta el valor del crítico, conservando todavía válida la condición de energía específica constante $E_1=E_3$. Esto equivaldría a que las condiciones en la sección 1 antes de la contracción quedaran representadas por un punto en la rama inferior de la curva en la Fig. 3.7 y las de la sección 3 después de la contracción, por el punto correspondiente al tirante crítico.



Fig. 6.24 Variación del número de Froude con el ángulo de deflexión a lo largo de una pared curva de un flujo supercrítico (Ref. 13).

La curva dibujada sobre el lado izquierdo de la Fig. 6.25 corresponde a los puntos de coordenadas $(\sigma, F_{\Gamma 1})$ para los que se satisface la citada condición $E_1 = E_3$ y representa el límite de estrangulamiento siguiendo este criterio.

Para el régimen supercrítico existe la posibilidad de un segundo mecanismo de estrangulamiento que consiste en que la contracción produzca un salto hidráulico aguas arriba de la misma entre las secciones 1 y 2, para el cual se verificaría igualdad de momentum $M_1 = M_2$. Además, entre la sección 2 del salto y

la 3 dentro de la contracción también se verificaría que $\rm E_2 = E_3$ y que el tirante $\rm y_3$ disminuyera al valor del crítico de manera similar al del primer mecanis—mo

La curva dibujada sobre la derecha de la Fig. 6.25 corresponde a los puntos para los que se satisfa cen las condiciones $M_1=M_2$ y $E_2=E_3$ y representa la condición límite de estrangulamiento siguiendo este criterio.

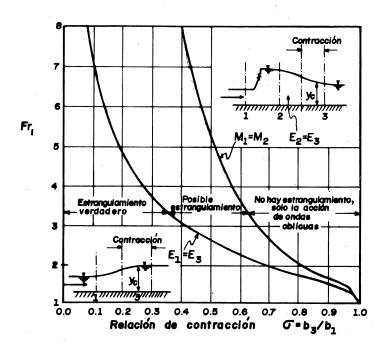
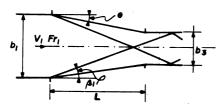


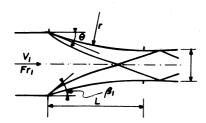
Fig. 6.25 Límite de estrangulamiento de una contracción en régimen supercrítico (ref. 13).

Las dos curvas de la Fig. 6.25 definen tres zo nas. Un punto que quede sobre la zona a la izquierda de la primera curva representa las condiciones de un seguro estrangulamiento del flujo, por efecto de la con tracción y de un cambio de régimen en el escurrimiento. La zona comprendida entre las dos curvas representa condiciones menos extremas y la posibilidad de un estrangulamiento si no se garantiza la prevalencia del régimen supercrítico aguas abajo de la contracción. Finalmente, para la zona a la derecha de la segunda curva, no existe el peligro de estrangulamiento si no más bien condiciones estables del flujo.

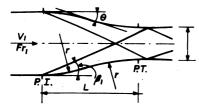
Debe ser claro que el análisis antes descrito toma en consideración únicamente la relación de contracción y el número de Froude F_{r_1} aguas arriba.


Para propósitos de diseño es conveniente tener un valor F_{r_1} suficientemente grande y una relación de contracción suficientemente pequeña que evite cualquier mecanismo de estrangulamiento, pero además un número de Froude F_r , aguas abajo alejado de uno.

En lo que se refiere al efecto de los cambios de alineación de las paredes en la contracción, se for man líneas de perturbación positivas y negativas como resultado de los cambios simultáneos en la alineación de las dos paredes. La superposición de los efectos produce perturbaciones que se suman y también se trans miten a las paredes opuestas, donde se reflejan y crean una configuración en forma de diamante, de ondas estacionarias que pueden persistir en el canal aguas abajo. Dicha configuración puede incrementar de manera importante los requerimientos de bordo libre a lo largo del canal y de ello se deriva la necesidad de un buen diseño.


La Fig. 6.26 muestra tres diferentes geometrías típicas con que puede diseñarse la contracción de un canal rectangular a régimen supercrítico. Para compararlas es necesario estudiar su funcionamiento hidráulico, considerando las mismas dimensiones de los canales antes y después e igual longitud de contracción.

La contracción recta de la Fig. 6.26a es sencilla y en ella se producen frentes oblicuos positivos en los puntos de inflexión de ambas paredes, con ángulos de inclinación β_1 acordes con el ángulo θ . En la contracción de la Fig. 6.26b la forma de las paredes

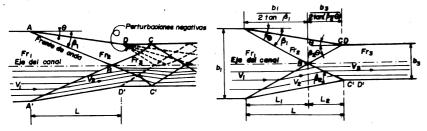

es convexa y aunque se desarrolla en la misma longitud de la ánterior, el ángulo θ es mayor y produce líneas de perturbación positiva con inclinación β_1 también ma yor. Finalmente, en la contracción de la Fig. 6.26c las paredes son de forma S, combinando arcos circula—res de igual radio que revierten y deflectan un ángulo θ del doble producido en la contracción recta, por lo que las líneas de perturbación tienen también inclinación β_1 mayor.

1) Trazo de paredes rectas.

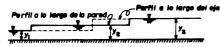
b) Trazo de paredes convexas

c) Trazo de paredes en forma de S

Fig. 6.26 Tipos de geometría en una contracción de un canal rectangular con régimen supercrítico


En la medida que θ crece, aumenta también el tirante aguas abajo de las líneas de perturbación, de manera que el orden de mejor o peor funcionamiento es el que tienen las figuras 6.26. En efecto, las investigaciones analíticas y experimentales de Ippen y Dawson (Ref. 35) han mostrado, que las contracciones simétricas de paredes rectas y convergentes (Fig. 6.26a) son mejores que las del trazo curvo de igual longitud, siempre que el ángulo θ de la pared sea adecuadamente elegido para lograr un comportamiento hidráulico similar al de la Fig. 6.22c. Según el U.S. Bureau of Reclamation (Ref. 21), una fórmula experimental aproxima da para calcular dicho ángulo es:

$$\tan \theta = \frac{1}{3 F_{\Gamma}}$$
 (6.24)


donde F_r es el número de Froude calculado con los valores promedio de tirante y velocidad que se tengan antes y después de la contracción.

En las contracciones de pared recta se producen frentes de onda con inclinación β en los puntos A y A' al principio de la transición, los cuales se extienden e intersectan en el punto B sobre su eje, y des pués de sufrir algunas alteraciones, alcanzan las paredes opuestas en C y C' (Fig. 6.27a). En las regiones ABC y A'B'C' el flujo continúa a través de un nuevo campo caracterizado por el número de Froude Fr $_2$ y en los puntos D y D' al final de la contracción, se crean perturbaciones negativas por el nuevo cambio de alinea ción de las paredes y una configuración más complicada hacia aguas abajo.

A fin de tener el mínimo de perturbaciones, es necesario elegir un ángulo θ de la contracción de manera que los disturbios generados en A y A' intersecten a las paredes opuestas en D y D' y se cancelen con los negativos que se crearían en estos últimos puntos, eliminando con ello la propagación hacia aguas abajo. Esta situación se presenta en la Fig. 6.27b que también indica la geometría que se debe satisfacer de acuerdo con las líneas de perturbación generadas y la geometría de la contracción. Por supuesto, la transición nunca debe producir un cambio de régimen, esto es, Fr3 debe ser mayor que 1 y además, es recomendable que la relación y_3/y_1 se mantenga entre los valores 2 y 3.

- a) Esquema general de las perturbaciones
- b) Esquema de mínimas perturbaciones

c) Perfil del agua en la contracción

Fig. 6.27 Diseño de contracciones de paredes de trazo recto y simétrico, según Ippen y Dawson (Ref. 35)

Cualquiera que sea el esquema de perturbaciones que se presente en la contracción, se debe satisfa cer la ecuación de continuidad de manera que: b_1 V_1 = b_3 y_3 V_4 o bien que:

$$\frac{b_1}{b_3} = (\frac{y_3}{y_1})^{3/2} \frac{Fr_3}{Fr_1}$$
 (6.25)

y también la longitud de la contracción recta es:

$$L = \frac{b_1 - b_3}{2 \tan \theta}$$
 (6.26)

La geometría de las paredes y de los frentes de onda puede determinarse a partir de la teoría de la onda oblicua. En general se conocen las características del campo 1: y_1 , F_{r1} , b_1 y también el ancho b_3 , de biendo determinar el ángulo θ y la longitud de la contracción necesaria para lograr el esquema de mínimas perturbaciones mostrado en la Fig. 6.27b. Dicho esque ma exige que la longitud de la contracción sea:

$$L = \frac{b_1}{2 \tan \beta_1} + \frac{b_3}{2 \tan (\beta_2 - \theta)}$$

O bien, al sustituir esta expresión en la Ec. (6.26), resulta que:

$$\tan (\beta_2 - \theta) = \frac{\tan \theta}{\frac{b_1}{b_3} \left(1 - \frac{\tan \theta}{\tan \beta_1}\right) - 1}$$
 (6.27)

El diseño de la contracción puede realizarse con la teoría de la onda oblicua pasando del campo 1 al campo 2 y reiterando el proceso, del 2 al 3. Para ello se puede utilizar la Fig. 6.21 o bien directamente las ecuaciones resultantes de la teoría.

En el caso de utilizar el diagrama de la Fig. 6.21, conviene seguir los siguientes pasos:

- 1. Se supone un valor de θ entre los posibles que cubre la curva correspondiente a F_{r_1} en el tercer cuadrante.
- 2. Con F_{r_1} y θ se pasa al cuarto cuadrante para obtener β_1 y al cuarto para obtener y_2/y_1 y F_{r_2} .
- 3. Se reitera el paso anterior con el mismo valor de θ pero reemplazando a F_{r_1} por F_{r_2} , para obtener ahora a β_2 .
- 4. Sustituyendo los valores obtenidos de los pasos 2 y 3 en la Ec. (6.27), se determina otro valor de θ , mismo que deberá ser igual al supuesto en el paso 1. En caso negativo se reitera el procedimiento desde el paso 1 eligiendo un nuevo valor de θ . En caso positivo se continúa con el paso 5.
- 5. Con los valores de θ y Fr₂ correctos, del cuar to cuadrante se determina y₃/y₂ y Fr₃. El valor de y₃/y₁= (y₃/y₂) (y₂/y₁) conviene que sea entre 2 y 3. En caso negativo podría probarse otro ancho b₃ si las condiciones topográficas lo permiten. La longitud definitiva de la contracción se determinaría de la Ec. (6.26) y co

mo comprobación debe verificarse la Ec. (6.25).

Cuando se desea utilizar las Ecs. (6.11) a (6.16) en la solución, el proceso se alarga en virtud de que con ninguna de ellas se pueden determinar las variables indicadas en los pasos 1 y 2 anteriores sin calcular a β_1 . En esta situación es preferible utilizar el siguiente procedimiento equivalente:

- 1. Suponer un valor de y_2/y_1 y de la Ec. (6.15) calcular β_1 . De la Ec. (6.16) se obtiene el valor θ_1 y de la Ec. (6.12b) a $F_{r,2}$.
- 2. Sustituyendo θ_1 y β_1 en la Ec. (6.27), se calcula β_2 y de la Ec. (6.16) a θ_2 .
- 3. Si los valores θ_1 y θ_2 no son iguales, se reitera el procedimiento desde el paso 1. En caso afirmativo se continúa con el paso 4.
- 4. Con los valores finales se calcula y_3/y_2 , Fr_3 y L a partir de las Ecs. (6.14), (6.25) y (6.26) respectivamente. Aquí nuevamente el valor de $y_3/y_1 = (y_3/y_2) (y_2/y_1)$ conviene que sea entre 2 y 3 y en caso negativo probar otro ancho b_3 si esto es posible.

El ejemplo 6.4 aclara mejor el procedimiento.

La objeción al procedimiento de diseño de una contracción recta antes descrito reside en el hecho de que el sistema de ondas considerado se produce sólo para un valor de F_{r_1} . Si éste cambia al variar el gasto, las ondas reflejadas no intersectan a la pared opuesta en los puntos C y C'. Por ello, el diseño da buenos resultados en el extremo aguas abajo de rápidas y caídas en las que F_r , depende menos del gasto.

Por lo que se refiere a canales trapezoidales o de otra forma de sección, no existe una teoría que permita diseñar contracciones, debido a la complejidad de las perturbaciones que se producen. Los experimentos de Harrison en canales trapezoidales han mostrado que la inclinación β_1 de la perturbación inicial se aproxima bastante a los resultados obtenidos de la ecuación teórica de Engelund y Münch Petersen (Ref. 36)

para canales rectangulares, que es:

Para utilizarla en canales trapeciales, se sus tituye a b = B_1 , y_1 = A_1/B_1 y

$$F_{\Upsilon_1} = V_1 / \sqrt{gA_1/B_1}.$$

Es obvia la necesidad de una teoría general que combine diferentes aspectos básicos del análisis y que permita predecir el comportamiento del flujo en diferentes condiciones.

Ejemplo 6.4. Un canal rectangular revestido de concreto (n=0.016) tiene un ancho de 6 m y conduce un gasto de 35 m³/s con una pendiente $S_0=0.061$. Es necesario disminuir el ancho del canal a 3 m mediante una contracción recta simétrica, como en la Fig. 6.27b, manteniendo la misma pendiente de plantilla aguas abajo de la contracción, y que teóricamente produzca el mínimo de perturbaciones.

Solución. Es necesario primero determinar las condiciones hidráulicas aguas arriba de la contracción y para ello iniciamos con el tirante normal. Suponiendo que dicho tirante es $y_1 = 0.60$ m, el área hidráulica, perímetro y radio hidráulico respectivamente son: $A_1 = 3.60$ m², $P_1 = 7.20$ m y Rh = 0.50 m. Por la fórmu la de Manning, la velocidad y el gasto para el tirante supuesto son: $V_1 = 9.724$ m/s y Q = 35.007 m³/s. El valor de Q coincide prácticamente con el gasto que con duce el canal, por lo que el tirante supuesto $y_1 = 0.60$ m es el tirante normal. Por tanto, el número de Froude vale:

$$F_{r_1} = \frac{V_1}{\sqrt{gy_1}} = \frac{9.724}{\sqrt{9.18 \times 0.6}} = 4.008 > 1$$

Esto significa que la contracción es en régimen supercrítico.

Si el canal aguas abajo de la contracción continúa con la misma pendiente pero con 3 m de ancho; el tirante normal se calcula de la misma manera que antes, resultando: y_3 = 1.045 m, V_3 = 11.1643 m/s y F_{r_3} = 3.4869.

La relación de contracción es: $b_3/b_1=0.5$ y con $F_{r_1}=4$, en la Fig. 6.25 se cae en la zona de posible estrangulamiento, si bien las condiciones del canal aguas abajo $(F_{r_3} \ge 1)$ garantizan la prevalencia del régimen supercrítico.

Un valor aproximado de la longitud de la contracción se puede conocer utilizando el criterio del U.S. Bu—reau of Reclamation. Los promedios de tirante, velocidad y número de Froude de las secciones aguas arriba y aguas abajo son:

$$y = \frac{0.6 + 1.045}{2} = 0.8225 \text{ m}$$

$$V = \frac{9.724 + 11.1643}{2} = 10.4442 \text{ m/s}$$

$$Fr = \frac{10.4442}{\sqrt{9.81 \times 0.8225}} = 3.6768$$

y de la Ec. (6.24) tan θ = 0.0907 o bien =5°11'. De la Ec. (6.26), la longitud de la contracción es:

$$L = \frac{6 - 3}{2 \times 0.0907} = 16.546 \text{ m}$$

Es necesario recordar que una de las hipótesis para de sarrollar la teoría de la onda oblicua consiste en con siderar que el canal es horizontal o con una pendiente tal que compense a las pérdidas por fricción dentro de la transición. Por tanto, el cálculo del tirante aguas abajo queda sujeto a la teoría de la onda oblicua para que después se revise su valor de acuerdo con la transición.

Para determinar dicho tirante, se puede seguir el proceso iterativo indicado en el diagrama que se presenta en la Fig. 6.28 y a continuación indicamos los cálculos que corresponden al valor final que satisface dicho proceso.

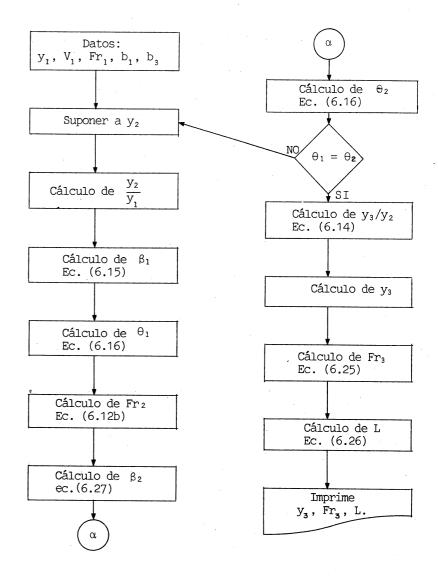


Fig. 6.28 Proceso iterativo en la solución del ejemplo 6.4

Suponiendo y_2 = 0.9191 m; y_2/y_1 = 1.53189 y con F_{r_1} = 4.008, de la ec. (6.15) resulta que:

sen
$$\beta_1 = \frac{1}{4.008} \sqrt{\frac{1}{2} \times 1.53189 \times 2.53189} = 0.34745; \beta_1 = 20.33152^{\circ}$$

También, de la Ec. (6.16) se tiene que:

$$\tan \theta_1 = \frac{\tan 20.33152^{\circ} (\sqrt{1 + 8 (4.008)^2 - \sin^2 20.33152} - 3)}{2 \tan^2 20.33152^{\circ} + \sqrt{1 + 8 (4.008)^2 - \sin^2 20.33152} - 1} = 0.118073$$

$$\theta_1 = 6.7339^{\circ}$$

De la Ec. (6.12b) resulta que:

$$F_{r_2} = \frac{4.008 \times 0.34745 (1/1.53189)^{3/2}}{\text{sen} (20.33152 - 6.7339)} = 3.124087$$

Así mismo, de la Ec. (6.27) se obtiene que:

$$\tan (\beta_{2} - \theta_{1}) = \frac{0.118073}{\frac{6}{3} (1 - \frac{0.118073}{0.370537}) - 1} = 0.325545; \quad \beta_{2} = 24.76613^{\circ}$$

y de la Ec. (6.16):

$$\tan \theta_2 = \frac{\tan 24.7661^{\circ} (\sqrt{1+8} (3.12408)^2 \sin^2 24.7661^{\circ} - 3)}{2 \tan^2 24.7661^{\circ} + \sqrt{1+8} (3.12408)^2 \sin^2 24.7661^{\circ} - 1} = 0.118073$$

Siendo $\theta_2 = 6.7339^\circ = \theta_1$

Por tanto, de la Ec. (6.14) resulta que:

$$\frac{y_3}{y_2} = \frac{1}{2} \left(\sqrt{1 + 8 (3.1241)^2 \text{ sen }^2 24.7663^0} - 1 \right) = 1.41717$$

siendo que $y_3/y_1 = 1.41717 \times 1.53189 = 2.17095$ que es mayor que 2 y menor que 3, siendo $y_3 = 1.3026 \text{ m}$.

Además, de la Ec. (6.12b) se tiene que:

$$F_{r_3} = \frac{3.124087 \text{ sen } 24.7661^{\circ}}{\text{sen } (24.7661^{\circ} - 6.7339^{\circ}) (1.41717)^{3/2}} = 2.506013$$

Así mismo, de la Ec. (6.25) se verifica que:

$$\frac{b_1}{b_3} = (2.17095)^{3/2} \times \frac{2.506013}{4.008} = 2$$

Finalmente, la longitud de la contracción resulta de la Ec. (6.26) y es:

$$L = \frac{6 - 3}{2 \times 0.118073} = 12.704 \text{ m}$$

Puesto que el tirante calculado aguas abajo de la transición $y_3 = 1.3026$ m es mayor que el normal $y_0 = 1.045$ m, esto significa que el flujo después de la contracción vuelve a acelerarse a través de un perfil tipo S_3 , hasta alcanzar el tirante normal $y_0 = 1.045$ m.

Ejemplo 6.5. La contracción del ejemplo 6.4 se desea diseñar con la geometría del tipo presentado en la Fig. 6.26c y las dimensiones que muestra la Fig. 6.29, siendo su longitud la misma que resultó para la transición recta. Determinar la variación del tirante so bre la pared de la contracción utilizando la teoría de las pequeñas perturbaciones.

Solución. Los resultados de los cálculos prelimina—res del ejemplo 6.4 son válidos también para éste.

Los frentes de onda positivos y convergentes señala—dos en la Fig. 6.23a correspondientes al arco AB, resultan con deflexiones $\Delta\theta$ = 2°, siguiendo posteriormente con el mismo incremento para el arco BC pero con frentes de onda negativos y divergentes.

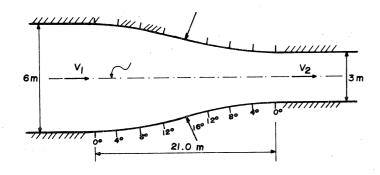


Fig. 6.29 contracción del ejemplo 6.5

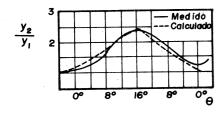


Fig. 6.30 Perfil de la superficie del agua sobre la pared de la contracción en el ejemplo 6.5 (Ref. 35)

La energía específica antes de la contracción y que se considera constante, tiene el valor

$$E = 0.60 + \frac{9.724^2}{19.62} = 5.42 \text{ m}$$

Por tanto, de la Ec. (6.21) se tiene que:

$$y = \frac{5.42}{1 + 0.5 \, \text{Fr}^2}$$

con la cual se obtiene y, a partir de los valores de F_r calculados de la Ec. (6.21). Para $\theta = 0$ y $F_{r_1} = 4$,

de la Ec. (6.22) o de la Fig. 6.24: θ_1 = 27.256° y per manece constante. Aplicando esta misma ecuación o la misma figura se utilizan valores de F_r hasta encomtrar aquél que corresponde al de deflexión θ , para después calcular los valores de y sobre la pared. Los cálculos se resumen en la tabla 6.1 en la que además aparecen los valores obtenidos experimentalmente por Ippen y Dawson (Ref. 35) para una transición de geome tría similar, encontrándose discrepancias entre los valores teóricos y experimentales que oscilan entre -18% y + 11%.

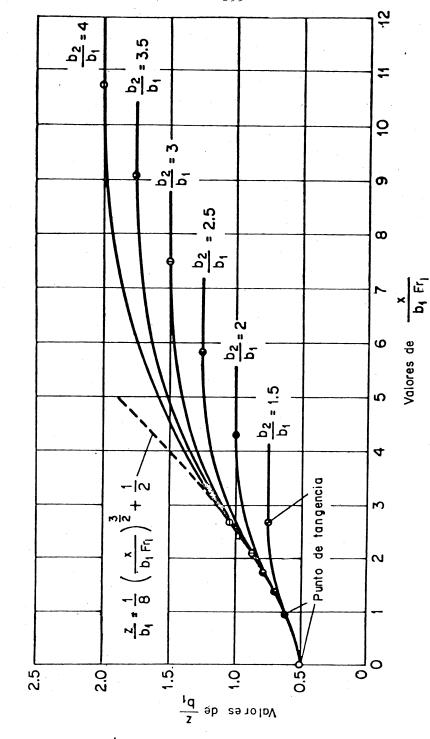
Tabla 6.1 Solución de la Ec. (6.22) para el ejemplo 6.5

θ	$F_{\mathbf{r}}$	β	у	y/y ₁	У	y/y ₁
	Ec. (6.22)	Ec. (6.17)	Ec. (6.21)	Ec. (6.21)	(Experim)	(Experim)
0°	4.000	14,478°	0.60	1.0	0.654	1.09
2°	3.696	15.698°	0.692	1.153	0.678	1.13
4°	3.429	16.956°	0.788	1.313	0.708	1.18
· 6°	3.192	18.257°	0.889	1.482	0.810	1.35
80	2.980	19.607°	0.996	1.66	0.900	1.50
10°	2.788	21.019°	1.109	1.918	1.092	1.82
12°	2.613	22.501°	1.228	2.047	1.254	2.09
14°	2.454	24.048°	1.351	2.252	1.368	2.28
16°	2.306	25.700°	1.481	2.468	1:398	2.33
14°	2.454	24.048°	1.351	2.252	1.44	2.40
12°	2.613	22.501°	1.228	2.047	1.392	2.32
10°	2.788	21.019°	1.109	1.918	1.308	2.18
8°	2.980	19.607°	0.996	1.66	1.134	1.89
6°	3.192	18.257°	0.889	1.482	0.954	1.59
40	3.429	16.956°	0.788	1.313	0.87	1.45
2°	3.696	15.698°	0.692	1.153	0.75	1.25
0°	4.000	14.478°	0.60	1.000	0.732	1.22
			*			

Si el canal aguas abajo de la contracción continúa con la misma pendiente de plantilla pero 3 m de ancho, el tirante normal para esta nueva condición sería de 1.045 m, como es factible comprobarlo. Esto significa que al alcanzar la sección para la que se tiene este tirante, ya no disminuye el mismo. En la tabla 6.1 se observa que esto ocurre para la sección comprendida entre valores de θ de 10° y 8°, casi al final de la transición.

Los valores de y obtenidos de la tabla 6.1 permiten definir la altura de los bordos de la transición, utilizando el criterio adecuado según el tipo de régimen en el canal. La Fig. 6.30 muestra una comparación entre los resultados teóricos y los experimentales obtenidos por Ippen y Dawson (Ref. 35).

6.3.3.4 Diseño de expansiones.


La descarga de un conducto cerrado -compuerta, vertedor o rápida- con frecuencia ocurre a régimen su percrítico y a veces en expansión. Esto puede ocasio nar la posible separación desde las paredes si éstas divergen demasiado y la formación de zonas muertas propicias para el depósito y circulación de material sólido arrastrado por el aqua.

Con base en estudios analíticos y experimenta les, Rouse, Bhoota y Hsu (Ref. 37) obtuvieron resulta dos útiles en el diseño preliminar de estas expansiones. La primera etapa de sus investigaciones consistió en estudiar el mecanismo de la expansión más brusca posible: un flujo supercrítico saliendo de un canal rectangular de ancho b_1 y número de Froude F_{r1} expandiéndose sobre un piso horizontal.

La segunda etapa se encaminó a determinar la forma más satisfactoria que deberían tener las paredes de manera que, siguiendo líneas de corriente, con finaran 90 porciento del gasto descargado en la situación antes descrita. La ecuación de la pared para estas condiciones resultó ser:

$$\frac{z}{b_1} = \frac{1}{8} \left(\frac{x}{b_1 Fr_1} \right)^{3/2} + \frac{1}{2}$$
 (6.29)

 $\hbox{donde x es la distancia sobre el eje del canal desde}\\$

de una expansión en régimen para diseñar la frontera lause, Bhoota y Msu (ref.37) Rause, Bhoota y Msu generalizadas Curvas Fig. 6.31

el inicio de la expansión, para la cual el semiancho entre paredes es z. La Fig. 6.31 aclara mejor estas notaciones.

La tercera etapa consistió en ajustar la forma de las paredes, toda vez que siguiendo la Ec.(6.29), estas divergen indefinidamente. Por la vía experimental se consiguió un diseño, mediante curvas que revierten, que permite dirigir el flujo a un ancho finito b_2 aguas abajo con el mínimo de perturbaciones.

Los resultados finales de la investigación se presentan en la Fig. 6.31 a través de curvas generalizadas de expansión, que proporcionan la forma que deben tener las paredes para cualquier valor de $F_{\rm r_1}$ y para una amplia variedad de relaciones de expansión b_2/b_1 . Dichas curvas pueden utilizarse para el diseño preliminar de las paredes.

Cambios de dirección horizontal

6.4.1 Aspectos generales

El ingeniero que proyecta un canal se encuentra frecuentemente con la necesidad de diseñar curvas o codos para cambiar la dirección de su eje. Por otra parte, el desarrollo de curvas sucesivas o meandros en un río forma parte esencial del proceso de estabilización del cauce, al cual tienden sus condiciones cambiantes.

Los cambios de dirección horizontal en un canal o río producen a menudo modificaciones importan tes en el flujo, debido a la complejidad de las tra yectorias curvas resultantes y a los siguientes pro blemas:

- a) Se producen corrientes de forma espiral y ondas cruzadas.
- b) La fuerza centrífuga resultante de la trayectoria curva produce el ascenso del agua sobre el lado exterior y un descenso sobre el lado interior; la diferencia de niveles entre ambos lados de la curva se conoce co mo sobreelevación.
- c) La distribución de velocidades en las sec-

ciones transversales de la curva es muy irregular, con coeficientes $^\alpha$ y β usualmente mayores que uno.

d) Si las curvas son muy forzadas, esto puede dar lugar a pérdidas de energía importan tes que alteran el perfil de la superficie libre aguas arriba de la curva.

El flujo en una curva horizontal se comporta de manera diferente en el caso de un régimen subcrítico que en supercrítico. En el primer caso se presentan perfiles de flujo con pocas alteraciones, sobreelevaciones y pérdidas pequeñas e inducen disturbios que persisten cierta distancia, hacia aguas arriba y hacia aguas abajo, pudiendo rebasar y dañar los bordos del canal.

Cuando el régimen es supercrítico se producen ondas oblicuas por el efecto del cambio en la alineación de las paredes, las que incrementan notablemente la sobreelevación. Por otra parte, la interacción de las fuerzas de fricción, centrífuga y de inercia en el líquido dentro de la curva, producen el llamado flujo espiral. Cerca del fondo del canal, la velocidad de las partículas se ve retardada por la resisten cia de pared. Las partículas sobre la superficie tie nen fuerzas de inercia mayores, debido a que su velocidad es también mayor y tienden a mantener su dirección descendente en el canal. Mientras tanto, las partículas más lentas cerca del fondo son forzadas a seguir trayectorias de gran curvatura para mantener un balance entre las fuerzas centrífugas y de presión. Para cumplir con la continuidad en la masa de líquido, se produce un flujo ascendente desde el fondo, a lo largo de la margen interior, que se ve forzada a descender hacia la pared exterior y a seguir a lo largo de trayectorias helicoidales según la dirección general del movimiento, teniendo componentes de velocidad. normales y transversales al plano de la sección trans versal. Las componentes transversales crean el llama do flujo secundario que se muestra en la Fig. 6.32a.

Si se observa la sección del canal hacia aguas abajo, una curva hacia la derecha produce un flujo es piral en sentido contrario al de las manecillas del reloj, mientras que una curva hacia la izquierda produce un flujo espiral en el sentido de las manecillas del reloj (Fig. 6.32a).

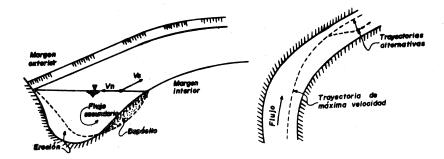


Fig. 6.32a Corriente secundaria en una curva horizon tal

Fig. 6.32b Flujo espiral

El flujo espiral es tridimensional y por lo mismo complicado. Se presenta tanto en canales rectos como en curvos; sin embargo, en los últimos ocurre con mayor intensidad y de manera muy irregular. Esto se debe a la combinación e interferencia entre el flujo espiral generado en el canal recto antes de la curva y el generado en la misma. las corrientes trans—versales de mayor magnitud se presentan en la pared exterior para la seccion a la mitad de la curva; después se desplazan gradualmente, con inclinación ascendente hacia la pared interior al final de la misma. Si la curva es seguida por una tangente larga, el flujo espiral desarrollado persiste por alguna distancia hacia aguas abajo.

La Fig. 6.32b muestra cómo se mueve el punto de velocidad máxima, en dirección transversal hacia el lado exterior de la curva e inmediatamente aguas abajo de ésta. En algunos casos puede después oscilar de un lado a otro del canal. En el caso de que el material sea erosionable, este efecto puede dañar la plantilla del canal.

Se han realizado diferentes estudios del flujo espiral tendientes a encontrar las causas del fenóme-

no, siendo las principales: a) la fricción sobre las paredes del canal, la cual disminuye la velocidad de las partículas cercanas a la pared respecto de las que se mueven por el centro; b) la fuerza centrífuga que desvía las partículas de agua de su movimiento rectilíneo y que además produce la sobreelevación; c) la distribución no uniforme de las velocidades sobre la vertical en las secciones del canal de llegada y de la propia curva y que inicia el movimiento espiral en el flujo.

En los ríos naturales el flujo secundario pue de ser importante, con tendencia a erosionar el sedimento en el lado exterior y a depositarlo en el lado interior, formando una sección como la mostrada en la Fig. 6.32a. Esto significa que la orilla exterior de la curva constituye una zona de escasa concentración de sedimentos, propicia para ubicar la boca-toma de un canal que derive agua del escurrimiento principal y construir las obras necesarias para evitar la erosión.

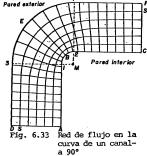
En algunos ríos muy anchos, el flujo espiral puede ser tan débil que su efecto es eliminado por las fuerzas resultantes de la fricción con la plantilla y bórdos.

6.4.2 Curvas en régimen subcrítico

6.4.2.1 Características básicas del flujo

El flujo subcrítico en una curva tiene la característica importante de tridimensionalidad que no poseen los escurrimientos sobre tramos rectos hasta ahora tratados. Dicho escurrimiento se puede describir con la ayuda de la teoría del flujo con potencial, bajo condiciones de bidimensionalidad sobre planos ho rizontales y haciendo ciertas hipótesis. Para ello se supone una distribución uniforme de velocidades sobre la vertical de una sección transversal en la curva.

El tratamiento del problema con la teoría del flujo con potencial concuerda con la realidad en ausen cia de separaciones y pérdidas de energía en el escurrimiento, ya que de ocurrir éstas, invalidarían la aplicación del procedimiento. También si la sección transversal del canal se viera muy afectada por el es


currimiento tridimensional en la curva (socavaciones, depósitos, etc.), los resultados perderían también vá lidez; esto también ocurre en el caso de que el régimen en el canal fuera supercritico.

El caso más simple del movimiento en trayecto rias curvas sobre planos paralelos a la plantilla, se asemeja al escurrimiento circular bidimensional llama do del vórtice libre (tratado en el inciso 10.6.1 y Fig. 10.33 del Vol. 1). Este queda limitado por las paredes curvas del canal, y se supone válida la ley de variación de velocidades, dada por la Ec. (10.47b) del mismo libro y que es:

$$v = \frac{k}{r} \tag{6.30}$$

Esta ley indica que para el radio más pequeño resulta la velocidad más grande, y que en la orilla in terior de una curva circular se presenta una mayor velocidad que en la exterior. La Fig. 6.33 muestra la red de flujo de una curva circular a 90°. Puesto que la teoria del potencial se fundamenta en un escurrimiento de vórtice libre sin fricción, el horizonte de energía se mantiene constante para cada línea de corriente del movimiento y cada sección transversal, al ser válida la Ec. (10.3) del Vol. 1. Esto significa que, para y = p/ $\frac{1}{3}$ + z (Fig. 6.34) se tiene que:

$$E = y + \frac{v^2}{2g} = const.$$
 (6.31)

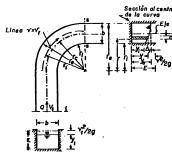


Fig. 6.34 Comportamiento del flujo en una curva de un canal rectangular

Sección 1

o bien, considerando además a la Ec. (6.30), se tiene que:

$$y = E - \frac{v^2}{2g} = E - \frac{k^2}{2g} \frac{1}{r^2}$$
 (6.32)

Aceptando que todas las líneas de corriente son concéntricas con el centro de curvatura de las paredes, el gasto en la sección es:

$$Q = \int_{r_{i}}^{r_{e}} v \quad y \, dr = \int_{r_{i}}^{r_{e}} \frac{k}{r} (E - \frac{k^{2}}{2g} \frac{1}{r^{2}}) dr \qquad (6.33)$$

La integración proporciona el siguiente resu<u>l</u> tado:

$$Q = K E l_n \frac{r_e}{r_i} - \frac{k^3}{4g} \left(\frac{1}{r_i^2} - \frac{1}{r_e^2} \right)$$
 (6.34)

La pendiente transversal de la superficie libre del agua se determina derivando la Ec. (6.32) con respecto a r; esto es:

$$\frac{\mathrm{d}y}{\mathrm{d}r} = \frac{\mathrm{k}^2}{\mathrm{gr}^3} = \frac{\mathrm{v}^2}{\mathrm{gr}} \tag{6.35}$$

Debido a que v/r y v^2 /gr son siempre positi—vos, las Ecs. (6.30) y (6.35) indican que v disminuye y y aumenta, de la orilla interior hacia la exterior. Los efectos de resistencia al flujo modifican este comportamiento ya que el punto de velocidad máxima no se encuentra sobre la pared interior, sino a cierta distancia de ella.

La diferencia de tirantes entre el correspondiente y para el radio r,y el del interior de la curva y_i , vale:

$$y - y_1 = \frac{k^2}{2g} \left(\frac{1}{r_1^2} - \frac{1}{r^2} \right)$$
 (6.36)

La diferencia de tirantes entre el lado exterior y el interior de la curva es entonces:

$$\Delta y = \frac{k^2}{2g} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right) \tag{6.37}$$

Las ecuaciones anteriores proporcionan resultados confiables, pero tienen la dificultad de requerir el valor de la constante k; sin embargo, se pueden encontrar algunas aproximaciones, sea para el valor de k o para el cálculo directo de la sobreelevación.

a) Una aproximación para k consiste en omitir en la Ec. (6.33) la variación del tirante, lo cual parece permisible para velocidades pequeñas y grandes radios de curvatura. Considerando entonces que y permanece constante, de la ec. (6.33) resulta:

$$Q = \int_{r_i}^{r_e} y_i \frac{k}{r} dr = k y_i \ln \frac{r_e}{r_i}$$

y de aquí, la constante vale:

$$k = \frac{Q}{y_1 \ln (\frac{r_e}{r_1})}$$
 (6.38)

b) Otra aproximación consiste en suponer que, en cualquier sección transversal de la curva, se man—tiene una velocidad constante en todos los puntos de la sección igual a la velocidad media V_1 antes de la curva, tal como se indica en la Fig. 6.34. De la Ec. (6.35) resulta entonces que la sobreelevación vale:

$$\Delta y = \frac{V_1^2}{g} \int_{r_1}^{r_e} \frac{dr}{r} = \frac{V_1^2}{g} \ln \frac{r_e}{r_1}$$
 (6.39)

Este resultado ya se había obtenido en el ejemplo 2.11 del Vol. I.

c) Una aproximación más burda consiste en considerar constante tanto a la velocidad V_1 , como al radio medio r_C al eje del canal. De la misma Ec. (6.35), con b = r_e - r_i se tiene que:

$$\Delta y = \frac{V_1^2}{g r_C} \int_{r_1}^{r_C} dr = \frac{V_1^2 b}{g r_C}$$
 (6.40)

A este mismo resultado se llega bajo la hipótesis de un vórtice forzado, haciendo las mismas consideraciones de velocidad V_1 y radio medio r_C constantes. También se puede demostrar que, para estas condīciones, el perfil transversal de la superficie del agua es una línea recta.

d) Finalmente el valor más exacto para Δy en la sección transversal de una curva, se obtiene si se determina el radio $r=r_1$ para el cual la velocidad $v=v_1$ (Fig. 6.34). De la Ec. (6.30), $k=V_1r_1$, y de la Ec. (6.34) es:

$$Q = V_1 r_1 E \ln \frac{r_e}{r_1} - \frac{V_1^3 r_1^3}{4g} (\frac{r_e^2 - r_1^2}{r_0^2 r_1^2})$$

Siendo además: $r_e = r_C + \frac{b}{2} y r_i = r_C - \frac{b}{2}$ (Fig. 6.34), se tiene que:

$$\frac{r_{e}^{2} - r_{1}^{2}}{r_{e}^{2} r_{1}^{2}} = \frac{2r_{C} b}{\left[\left(r_{C} + \frac{b}{2}\right) \left(r_{C} - \frac{b}{2}\right)\right]} \frac{2r_{C} b}{\left(r_{C}^{2} - \frac{b_{2}}{4}\right)^{2}} = \frac{2b}{r_{C}^{3} \left(1 - \frac{b_{2}}{4r_{C}^{2}}\right)^{2}}$$
(6.41)

Así mismo, con $Q = V_1$ b y_1 , resulta que:

$$V_1 b y_1 - V_1 r_1 E ln \frac{r_e}{r_i} + \frac{V_1^3}{2g} \frac{r_1^3}{r_C^3} \frac{b}{(1 - \frac{b^2}{4r_C^2})^2} = 0$$

Multiplicando a esta ecuación por:

2g $(1 - b^2/4r_C^2)^2/V_i^3$ b, al ordenar términos se obtiene que:

$$(\frac{r_1}{r_C})^3 - 2 r_1 \frac{E}{y_1} - \frac{g y_1}{{v_1}^2} - \frac{(1 - \frac{b^2}{4r_C^2})^2}{b} ln \frac{r_e}{r_1} + 2 \frac{g y_1}{{v_1}^2} \frac{r_e^2 r_1^2}{r_C^4} = 0$$

Al sustituir en esta ecuación al número de Froude

 $F_{r_1} = V_1 / \sqrt{g y_1}$ del escurrimiento antes de la curva, resulta que:

$$\left(\frac{r_1}{r_C}\right)^3 - 2\frac{r_1}{r_C} = \frac{E}{y_1 F_{r_1}^2} \frac{\left(1 - \frac{1}{4} \frac{b^2}{r_C^2}\right)^2}{b/r_C} - \ln\left(\frac{1 + \frac{1}{2} \frac{b}{r_C}}{1 - \frac{1}{2} \frac{b}{r_C}}\right) + \frac{2}{F_{r_1}^2} \left(1 - \frac{1}{4} \frac{b^2}{r_C^2}\right)^2 = 0 \quad (6.42)$$

En esta ecuación, E representa la energía específica en la sección transversal analizada de una cur va y es igual a la energía específica antes de la misma; de este modo, de la Ec. (6.31) se tiene que:

$$\frac{E}{y_1} = 1 + \frac{{v_1}^2}{2g y_1} = 1 + \frac{1}{2} F_{r_1}^2$$

Al sustituir esta relación en la Ec. (6.42), haciendo a = $b/2 \ r_C$ resulta:

$$\left(\frac{r_1}{r_C}\right)^3 - \left(\frac{r_1}{r_C}\right) \left(\frac{2 + Fr_1^2}{2 \cdot Fr_1^2}\right) \frac{\left(1 - a^2\right)^2}{a} \ln \frac{1 + a}{1 - a} + 2 \frac{\left(1 - a^2\right)^2}{Fr_1^2} = 0$$
 (6.43)

Por otra parte, siendo k = V_1 r_1 y tomando en cuenta la Ec. (6.41), la Ec. (6.37) se puede escribir como sigue:

$$\frac{\Delta y}{y_1} = \frac{V_1^2}{g y_1} \frac{r_1^2}{r_C^2} \frac{2b/2r_C}{(1 - \frac{b^2}{4r_C^2})^2} = F_{r_1}^2 \frac{r_1^2}{r_C^2} \frac{2a}{(1 - a^2)^2}$$

O bien:

$$\frac{r_1}{r_C} = \sqrt{\frac{\Delta y/y_1}{F_{r_1}}} \frac{1 - a^2}{\sqrt{2a}}$$

Al sustituir esta ecuación en la (6.43), teniendo en cuenta que

$$(\sqrt{2a})^3 = 2a \sqrt{2a}$$
, resulta finalmente que:

$$\left(\sqrt{\frac{\Delta y}{y_1}}\right)^3 - \sqrt{\frac{\Delta y}{y_1}} \left(2 + F_{r_1}^2\right) \ln \frac{1+a}{1-a} + 4 F_{r_1} \frac{a\sqrt{2a}}{1-a^2} = 0$$
 (6.44)

Esta ecuación proporciona la sobreelevación máxima de tirantes en la proximidad de la sección transversal a la mitad de la curva, y la Fig. 6.35 representa gráficamente la solución de dicha ecuación, para valores de F_{r_1} <0.7.

En caso de canales trapezoidales pueden utilizarse las mismas ecuaciones antes deducidas para el cálculo de Δy , siempre que el ancho b se sustituya por el de la superficie libre B en el canal antes de la curva.

Para disminuir el efecto de flujo helicoidal, se recomienda que $\rm r_{\rm C}/b\!>\!3.$

El comportamiento del flujo en una curva de un canal natural es más complicado que los modelos an tes expuestos. Esto se debe principalmente al flujo circulatorio residual que se origina en otras curvas ubicadas aguas arriba y a la geometría generalmente irregular de los canales naturales. Además, sobre la pared interior de la curva (de radio y tirante gene—ralmente pequeño), se puede producir la separación de la corriente y crear una zona de estancamiento y vorticidad.

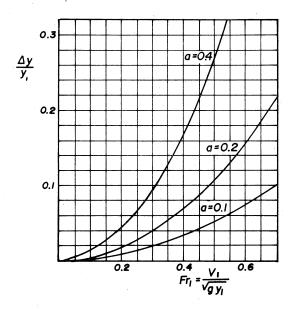


Fig. 6.35 Sobrelevación en una curva según la ec. 6.44 (Ref. 38)

R. P. Apmann (Ref. 39) realizó mediciones en ríos naturales y verificó la siguiente ecuación.

$$\frac{y_{e}}{\bar{y}} = \frac{(n+1)(1-r_{i}/r_{e})}{1-(r_{i}/r_{e})^{n+1}}$$
(6.45)

donde: $\bar{y} = (y_e + y_i)/2$ es el tirante medio en la curva y n es una variable que Apmann encontró igual al valor de 2.5, la que parece concordar con los resultados en canales artificiales.

Para fines de diseño, Apmann recomienda incrementar el tirante obtenido de la ecuación antes indicada, en 20% cuando el talud en la margen es de 45°, en 25% en talud vertical y 15% en talud 2:1.

Los resultados de Apmann también conducen a estimar que:

$$\frac{bm}{be} = \frac{I}{2} \frac{be}{re} + 1 \tag{6.46}$$

donde b_{m} es el ancho máximo del río dentro de la curva, b_{e} es el ancho en la sección de entrada a la curva y r_{e} el radio de la margen exterior.

De acuerdo con los estudios de Ripley (Ref. 2), la configuración del fondo de un río aluvial (Fig. 6.36) puede ser representada por la siguiente ecuación empírica:

$$y = 6.35 \ y \ (\sqrt{0.437 - \frac{x^2}{B^2}} - 0.433) \ (1 + \frac{Kx}{r_e}) \ (6.47)$$

La Fig. 6.36 permite identificar la simbología usada, siendo Y el tirante hidráulico o medio en la curva y K es un coeficiente que usualmente vale 17.52.

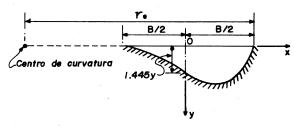


Fig. 6.36 Sección transversal empírica en una curva de un río aluvial.

Para utilizar la ecuación anterior debe observarse lo siguiente:

- a) Hasta $r_e=40\,\sqrt{A}\,$ no parece haber profundización mayor en la sección como resultado de un incremento en la curvatura, de aquí que en dichos casos, r_e en la ecuación no puede ser mayor que $40\,\sqrt{A}\,$ ya que valores mayores estabilizan la sección.
 - b) La ecuación pierde validez cuando $r_{\text{C}} \; \geq \; \text{110} \; \sqrt{A}$

- c) La ecuación se puede aplicar a canales curvos que no ocupen el total del ancho del cauce. Si esto ocurre K=26.28 y el valor de y obtenido debe incrementarse en 14%.
- d) La ecuación generalmente proporciona un an cho de río aproximadamente 20% mayor que el real cuan do se utiliza el tirante hidráulico.
- Ejemplo 6.6. Böss (Ref. 40) realizó experimentos con la curva de un canal de 30 cm de ancho, radio interior de 50 cm, gasto de 15.52 l/s y un tirante medio de 11.08 cm. Los resultados obtenidos se muestran en la Fig. 6.37. Efectuar una comparación con los resultados obtenidos teóricamente, según las diferentes aproximaciones antes presentadas.

Solución. La velocidad media antes de la curva y la carga de velocidad correspondiente, valen:

$$V_1 = \frac{0.01552}{0.3 \times 0.1108} = 0.467 \text{ m/s}$$

$$\frac{V_1^2}{2q} = \frac{0.467^2}{2 \times 9.81} = 0.0111 \text{ m}$$

Siendo la energía específica:

$$E = 0.1108 + 0.0111 = 0.1219 m$$

a) De la Ec. (6.38) se puede obtener entonces un valor aproximado de k

$$k = \frac{0.01552}{0.1108 \ln \frac{0.80}{0.50}} = 0.298$$

que sustituído en la Ec. (6.34), resulta un valor del gasto de:

Q = 0.298 x 0.1219 ln
$$\frac{0.80}{0.50}$$
 - $\frac{0.298^3}{4x \, 9.81}$ $(\frac{1}{0.5^2} - \frac{1}{0.8^2})$ = 0.01543 m³/s

Este valor tiene una diferencia del 0.6% respecto del correcto, lo cual es suficientemente aproximado.

Para el radio interior, la velocidad vale:

$$V_i = \frac{0.298}{0.5} = 0.596 \text{ m/s}$$

con una carga de velocidad:

$$\frac{\text{Vi}^2}{2\text{q}} = \frac{0.596^2}{19.62} = 0.0181 \text{ m}$$

El tirante en el lado interior vale entonces:

$$y_i = E - \frac{v_i^2}{2g} = 0.1219 - 0.018 = 0.1038 \text{ m}$$

De la Ec. (6.36), la diferencia de tirantes es:

$$y - y_1 = \frac{0.298^2}{2 \times 9.81} \left(\frac{1}{0.5^2} - \frac{1}{r^2} \right) = 0.004526 \left(4 - \frac{1}{r^2} \right)$$
 (a)

Con los resultados obtenidos se pueden calcular los tirantes y velocidades sobre una sección transversal de la curva y esto aparece en la tabla 6.2

Tabla 6.2 Cálculo de v y y en función de r, en el ejemplo 6.6

r	$v = \frac{0.298}{r}$	y ec(b)	$\Delta y = y - y_j$
m	m/s	m	m
0.50	0.596	0.1038	0
0.60	0.497	0.1093	0.0055
0.70	0.426	0.1127	0.0089
0.80	0.373	0.1148	0.0110

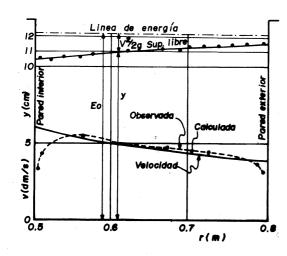


Fig. 6.37 Comparación entre los valores observados y los calculados en el ejemplo 6.6 (Ref. 40)

b)La Ec. (6.39) proporciona la diferencia de niveles entre el lado exterior y el interior de la curva y va le:

$$\Delta y = \frac{0.467^2}{9.81}$$
 ln $\frac{0.80}{0.50} = 0.0105$ m

que debe compararse contra 0.011 $\mathfrak m$ calculado en la tabla 6.2.

c) Utilizando la Ec. (6.40), para la misma magnitud se obtiene ahora que:

$$\Delta y = \frac{0.467^2}{9.81} \frac{0.30}{0.65} = 0.0103 \text{ m}$$

d) Finalmente, con a = 0.30/2 x 0.65 = 0.2308 y F_{rl} = 0.467/\sqrt{9.81 x 0.1108} = 0.448, de la Ec. (6.44) resulta:

$$\left(\sqrt{\frac{\Delta y}{y}}\right)^3 - \sqrt{\frac{\Delta y}{y_1}}\left(2 + 0.448^2\right) \ln \frac{1 + 0.2308}{1 - 0.2308} + 4 \times 0.448 \frac{0.2308\sqrt{2 \times 0.2308}}{1 - 0.2308^2} = 0$$

O bien:

$$(\sqrt{\frac{\Delta y}{y}})^3 - 1.03448 \sqrt{\frac{\Delta y}{y_1}} + 0.29681 = 0$$

Esta ecuación se satisface para $\Delta y/y_1 = 0.1011$, lo cual puede también verificarse en la Fig. 6.37. Resulta entonces que:

$$\Delta y = 0.1011 \times 0.1108 = 0.0112 \text{ m}$$

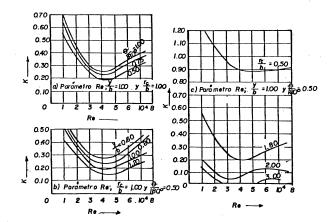
que es prácticamente igual al obtenido en la tabla.

Los valores calculados en la tabla se presentan también en la Fig. 6.37. Se observa buena concordancia entre los tirantes calculados y los medidos experimen talmente por Böss; sin embargo, existen desviaciones de las magnitudes de la velocidad en la proximidad de la pared, especialmente en el lado interior de la cur va. Estas desviaciones se deben a la influencia de la fricción con la pared, siendo posible que haya habido separación del flujo en el lado interior de la curva del modelo.

6.4.2.2 Pérdida de energía

Las modificaciones en el comportamiento del flujo en la curva de un canal, las corrientes secunda rias y las zonas de separación producen pérdidas de energía en el escurrimiento en adición a las que ocurren por efecto de la fricción. Los resultados experimentales sobre este tema son incompletos debido al gran número de variables independientes que intervienen.

La pérdida de energía en la curva depende del número de Reynolds del escurrimiento (Ec. 1.1), del ángulo de deflexión, de las relaciones geométricas y de la forma de la sección; queda determinada de la siguiente expresión:


$$h_{C} = K \frac{V^{2}}{2q} \tag{6.48}$$

donde V es la velocidad media en la sección del canal. Las Figs. 6.38 muestran los valores del coeficiente K obtenidos experimentalmente por Shukry (Ref. 41) en canales rectangulares lisos, que cubren intervalos am plios de las diferentes variables que intervienen y números de Reynolds hasta de 7.5 x 10⁴, valor todavía pequeño en comparación con los que normalmente resultan en la práctica. Por esta última razón, los resultados se circunscriben casi exclusivamente a canales de laboratorio.

En los resultados de Shukry se observa que el coeficiente K varía mucho con los parámetros R_e , r_c/b , y/b y θ . Para un caso dado, K se obtiene fijan do primeramente su valor con respecto a la tercera y cuarta variable. El mínimo de K se obtiene para $r_c/b=3$.

Otros trabajos experimentales realizados mues tran algunas discrepancias con los de Shukry y hay indicios en el sentido de que K depende mucho del flujo secundario, de tal manera que si éste ya existe en el flujo de llegada a la curva (como parece haber ocurrido en los experimentos de Shukry), puede diferir bastante la magnitud de la pérdida.

Mockmore (Ref. 42) obtuvo experimențalmente una ecuación aproximada para estimar el coeficiente

Figs. 6.38 Valores del coeficiente de pérdida de energía en curvas de canales rectangulares, según Shukry (ref. 41)

de pérdida y que es:

$$X = \frac{2b}{r_C} \tag{6.49}$$

válida para canales artificiales y ríos naturales en los que θ varía de 90° a 180°.

La pérdida de energía en una curva tiene mayor interés en el caso de régimen subcrítico, debido a que la sobreelevación puede transmitir el efecto de remanso hacia aguas arriba. Según Müller (Ref. 43), en este caso la línea de energía y el perfil de flujo son como se muestran en la Fig. 6.39. Dicha línea se sobreeleva en una cantidad $h_{\rm C}$ igual a la pérdida en

el punto A al principio de la curva. La mayor parte de esta energía se disipa en la longitud L y el resto sobre la distancia L'aguas abajo, que es la requerida para que el flujo llegue nuevamente a ser uniforme.

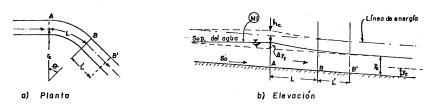


fig. 6.39 Perfil de flujo y línea de energía en una curva a régimen subcrítico (Ref. 43)

La pendiente de la línea de energía entre A y B' es mayor que So hasta B', a partir del cual nuevamente se igualan. Para que la línea de energía se so breeleve h_C en la sección A, debe producirse un incremento Δy en el tirante mayor que h_C y un remanso en el canal aguas arriba con perfil tipo MI, que tiene a A como sección de partida en los cálculos.

6.4.2.3 Diseño.

El diseño geométrico de curvas horizontales en régimen subcrítico, en general está supeditado a factores topográficos y geológicos. Sin embargo, en virtud de que las curvas incrementan la pérdida y pue den producir socavaciones serias, es necesario tomar en cuenta dichos efectos.

Las curvas normalmente se diseñan con un arco circular simple de radio pequeño. La sobreelevación que se produce en el tirante es de poca magnitud y usualmente no és necesario tomar medidas especiales

para reducirla. El efecto del flujo espiral se minimiza al elegir el radio medio $r_{\rm C}$ entre valores de 3 a 7 veces el ancho de la superficie libre, siendo 6 el mínimo en canales grandes, cualquiera que sea la forma de la sección.

Algunos autores recomiendan aumentar la pendiente de plantilla en la zona de la curva a fin de compensar el efecto de la pérdida y lograr una recuperación más rápida del flujo uniforme.

Ejemplo 6.7. Un canal rectangular revestido de concreto (n = 0.016 Manning) tiene un ancho de plantilla de 8.00 m. Diseñar una curva simple en dicho canal para hacer un cambio de dirección horizontal de 60°, cuando la pendiente es S_0 = 0.00085 y el tirante normal y_1 = 3.50 m.

Solución. Las magnitudes geométricas de la sección son: $A = 28 \text{ m}^2$; P = 15 m; $R_h = 1.8667 \text{ m}$. Por tanto, la velocidad y gasto que conduce son respectivamente:

$$V_1 = \frac{1}{0.016} (1.8667)^{2/3} \times 0.00085^{1/2} = 2.7625 \text{ m/s}$$

$$Q = 28 \times 2.7625 = 77.35 \text{ m}^3/\text{s}$$

El número de Froude y la energía específica valen:

$$F_{r_1} = \frac{2.7625}{\sqrt{9.81 \times 3.5}} = 0.472$$

$$E = 3.50 + \frac{2.7625^2}{2q} = 3.889 \text{ m}$$

Se deduce que el flujo es a régimen subcrítico. En este caso, de la Fig. 2.16 el bordo libre necesario es de 1.13 m.

Debido a que $r_C/b=3$ produce la pérdida mínima (Fig. 6.38), convendría probar con $r_C=3$ x 8 = 24 m. De esta manera, se tiene que:

$$r_i = 24 - \frac{8}{2} = 20 \text{ m}$$

$$r_e = 24 + \frac{8}{2} = 28 \text{ m}$$

Un valor aproximado de la sobreelevación se obtiene de la Ec. (6.39):

$$\Delta y = \frac{2.7625^2}{9.81} \ln \frac{28}{20} = 0.262 \text{ m}$$

 $\Delta y/2$ representa el 11.58% del bordo libre y el resultado es aceptable. Desde luego que el radio a elegir queda también supeditado a la topografía, pero si ésta no es una limitación, es preferible abatir la sobreelevación, incrementando el radio. Por ejemplo, ha ciendo que: $r_{\rm C}/b$ = 5, entonces $r_{\rm C}$ = 5 x 8 = 40 m y de esta manera: $r_{\rm i}$ = 36 m y $r_{\rm e}$ = 44 m.

De la Ec. (6.38) resulta que:

$$k = \frac{77.35}{3.5 \ln \left(\frac{44}{36}\right)} = 110.1307$$

Este valor, sustituído en la Ec. (6.34), proporciona el siguiente resultado:

Q = 110.1307 x 3.889 ln
$$(\frac{44}{36}) - \frac{110.1307^3}{4 \times 9.81} (\frac{1}{36^2} - \frac{1}{44^2}) = 77.264 \text{ m}^3/\text{s}$$

Esto representa una diferencia de 0.2% respecto al gasto real.

De la Ec. (6.37), la sobreelevación máxima vale:

$$\Delta y = \frac{110.1307^2}{2 \times 9.81} \quad (\frac{1}{36^2} - \frac{1}{44^2}) = 0.158 \text{ m}$$

 $\Delta\,y/2$ representa el 7% del bordo libre, lo que es más aceptable. Prácticamente sin ninguna diferencia,

otros valores para Δy son los siguientes:

$$\Delta v = 0.156 \text{ m}, \text{ de la Ec. } (6.39)$$

$$\Delta y = 0.156 \text{ m}, \text{ de la Ec. } (6.40)$$

$$\Delta y = 0.1585 \text{ m}, \text{ de la Ec. } (6.44)$$

Para calcular la pérdida en la curva se requieren los siguientes parámetros:

$$R_e = \frac{276.25 \times 186.67}{0.0124} = 4.16 \times 10^{6}$$

$$\frac{r_C}{b} = 5$$

$$\frac{y}{b} = \frac{3.50}{8} = 0.4375$$

$$\frac{\theta}{180} = \frac{60}{180} = 0.333$$

El número de Reynolds es muy grande para extra polar en las curvas de la Fig. 6.38 y por tanto es preferible usar la Ec. (6.49) por no disponer de mayor in formación, aún cuando no fue obtenida para ángulos menores de 90°. Por tanto, se tiene que:

$$K = \frac{2 \times 8}{40} = 0.40$$
; $h_C = 0.40 \times \frac{2.7625^2}{2g} = 0.156 \text{ m}$

Siendo entonces: $E=3.889+0.156=4.045\,\text{m}$. El tirante que satisface a dicho valor de la energía específica es de 3.696, por lo cual el incremento Δy indicado en la Fig. 6.39b vale:

$$\Delta v = 3.696 - 3.50 = 0.196 \text{ m}$$

6.4.3 Curvas en régimen supercrítico.

6.4.3.1 Características básicas del flujo.

El flujo supercrítico en una curva tiene las características descritas en el inciso 6.3.3.2, creando líneas de perturbación positiva. (Fig. 6.23a) en la pared exterior y negativa (Fig. 6.23b) en la pared interior.

La Fig. 6.40 muestra la disposición típica en planta de las ondas oblicúas formadas en una curva de un canal rectangular, con los frentes positivos y nega tivos señalados por las líneas ABD y A'BC respectiva—mente. Estos se generan en los puntos de tangencia A y A', con el ángulo β_1 dado por la Ec. (6.15).

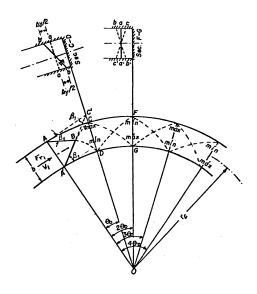


Fig. 6.40 Configuración de las ordas oblicuas para el flujo supercrítico en una curva simple horizontal,

La zona ABA' se muestra libre de disturbios y resulta claro que el tirante aumenta a lo largo de la línea AC hasta alcanzar un máximo en el punto C, en el cual, la primera línea de disturbios negativos llega a la pared exterior de la curva. De manera similar, el tirante mínimo se alcanza en el punto D sobre la pared interior.

Considerando que AC (a lo largo de la pared) representa la mitad de la longitud de onda que desarro lla el arco central θ_0 , esta longitud es aproximadamente AC \approx AC' = b/tan β_1 . Por tanto, se tiene que:

$$\tan \theta_0 = \frac{b}{(r_C + \frac{b}{2}) \tan \beta_1}$$
 (6.50)

donde β_1 está dado por la Ec. (6.17) de manera aproximada.

La continuación del trazo de los frentes de on da determina otros puntos de tirante máximo sobre la pared exterior, a intervalos de $2\theta_0$ después del primero, alternándose con mínimo sobre la pared opuesta. De la misma manera, ocurren mínimos sobre la pared exterior y máximos sobre la interior, con intervalos también de valor $2\theta_0$ intercalados entre los de signo opuesto antes señalado (Fig. 6.40). Esta configuración persiste más allá de la curva, manteniendo la misma longitud de onda hacia aguas abajo por una distancia mayor de la que se produce en régimen subcrítico.

La Ec. (6.22) se puede utilizar para calcular la variación del tirante a lo largo de las paredes y al principio de la curva, esto es, para $\theta < \theta_0$. Sin embargo, es más sencillo utilizar la Ec. (6.23) de Ippen y Knapp (Ref. 44). En el uso de ambas ecuacio—nes, el ángulo θ se considera positivo para el cálculo de tirantes a lo largo de la pared exterior, y negativo para tirantes a lo largo de la pared interior. El tirante en los primeros máximos de las ondas oblicuas se puede obtener usando el valor de θ_0 que resulte de la Ec. (6.50).

El perfil del agua en la sección A-A' al ini—cio de la curva, queda representado por la línea a-a'. El primer máximo se presenta sobre la pared exterior de la sección C-D y queda representada por la línea

b-b'. La línea c-c' representa la posición de la superficie libre del agua en la sección transversal F-G, donde se produce el mínimo sobre la pared exterior y el máximo sobre la interior. Ippen y Knapp (Ref. 44) verificaron experimentalmente los valores analíticos obtenidos en los máximos para todas las condiciones prácticas de geometría en la curva y de números de Froude. Como primera aproximación, las sobreelevaciones máximas tienen la magnitud dada por la Ec. (6.40), medidas por encima de la superficie libre del flujo an tes de entrar a la curva, en lugar de por encima de la superficie en la pared interior. Esto significa que para el régimen supercrítico la sobreelevación máxima entre los niveles de la pared interior y exterior de la curva es el doble de la que resulta para el régimen subcrítico; esto es, vale que:

$$\Delta y = \frac{2 V_1^2 b}{g r_C}$$
 (6.51)

En la sección F-G y similares se produce el tirante mínimo sobre la pared exterior y la superficie real del agua es a-a', debido a que el efecto de las ondas oblicuas es prácticamente eliminado por la sobre elevación.

Para el cálculo aproximado del perfil del agua en una curva en régimen supercrítico, se puede concluir que la onda de perturbación tiene una longitud de 2b/tan β_1 y una amplitud de $\pm~V_1{}^2$ b/g r_C en cada pared.

En canales trapeciales los taludes favorecen la sobreelevación en las curvas hasta magnitudes diez veces mayores que los obtenidos de la Ec. (6.51).

6.4.3.2 Diseño.

El problema mayor en el diseño de curvas a régimen supercrítico consiste en eliminar o reducir el efecto de las ondas oblicuas y de la sobreelevación. El efecto consiste en la disminución del bordo libre disponible, incremento de la pérdida por fricción debi do al flujo helicoidal, la propagación hacia aguas aba jo y el peligro de erosión del revestimiento en los puntos en que las ondas intersectan a las paredes.

La eliminación de estas perturbaciones es un problema dificil de resolver por lo que una medida recomendable sería disminuir, hasta donde sea posible, las curvas en régimen supercrítico.

Para disminuir el efecto de las ondas oblicuas en curvas simples, se recomienda que el radio medio $r_{\rm C}$ satisfaga la condición:

$$\frac{r_{\rm C}}{B_1} > 4 \, {\rm Fr_i}^2$$
 (6.52)

donde B_1 y F_{Γ_1} son el ancho de la superficie libre y número de Froude antes de la curva respectivamente.

Para reducir el efecto de la sobreelevación Knapp aplicó la Ec. (6.17) al diseño de curvas simples en régimen supercrítico y encontró conveniente una inclinación de la plantilla que ayuda también a dismi—nuir la acción de la onda. Esto es similar a la que se utiliza en las curvas de una carretera o ferrocarril y consiste en dar pendiente transversal a la plantilla, a fin de equilibrar la componente del peso del agua en la dirección radial con la fuerza centrífuga (Fig. 6.41). Esto implica que la resultante -del peso W del agua y de la fuerza centrífuga- sea perpendicular al piso del canal; esto es que:

$$\tan \theta = (\frac{\dot{W}}{g} \frac{V_1^2}{r_C})/W$$

por tanto, la pendiente transversal $S_t = \tan \theta$ adecua da debe ser:

$$S_{t} = \frac{V_1^2}{gr_C} \tag{6.53}$$

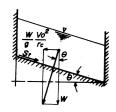


Fig. 6.41 Equilibrio y pendiente trans versal en una curva horizontal

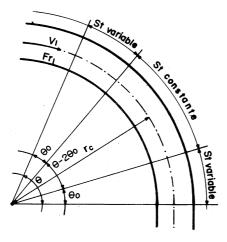


Fig. 6.42 Diseño de una curva simple a régimen supercrítico.

Para evitar cambios bruscos en las características del flujo, la pendiente transversal debe proporcionarse de manera gradual, desde cero al principio de la curva (Fig. 6.42) y aumentando linealmente hasta el máximo al final de la deflexión θ_0 . Después se mantiene dicho máximo en toda la parte central, para disminuir gradualmente hasta cero en una longitud de arco que corresponda también a θ_0 antes de terminar la cur va. De esta manera, la parte de curva con pendiente transversal constante, corresponde al ángulo $\theta = 2\theta_0$, donde θ es la deflexión total de la curva.

Para ello se pueden seguir tres opciones:

a) Mantener la pendiente longitudinal sobre la pared exterior de la curva, dando la pendiente trans—versal hacia la pared interior. Si la pendiente longi tudinal no es suficientemente grande, esto puede conducir a formar una depresión (con niveles más bajos) en el lado interior de la curva, lo que ocasiona que el

agua se aloje en dicha depresión cuando no exista escurrimiento en el canal.

- b) Mantener la pendiente longitudinal sobre el eje del canal, proporcionando la mitad de la depresión hacia cada pared de la curva. Esto simplifica el diseño, si bien puede formarse una depresión semejante a la del caso anterior, sobre la pared interior de la curva.
- c) Mantener la pendiente longitudinal sobre la pared interior de la curva, proporcionando la pen—diente transversal hacia el lado exterior. Esto eleva demasiado el lado exterior de la curva y puede resul—tar pendiente longitudinal negativa en dicho lado.

El procedimiento a seguir queda a criterio del proyectista según cada caso, sin embargo, el primero es el más utilizado.

La pendiente calculada con la Ec. (6.53) vale sólo para la velocidad de diseño; cuando ésta cambia, la pendiente transversal calculada es menos efectiva, por ello sólo se recomienda en canales que operan cerca o em las condiciones de gasto máximo.

La pendiente transversal es una solución costo sa desde el punto de vista de diseño y de la construcción; se justifica sólo en estructuras importantes o en sitios donde es necesaria una deflexión angular grande con longitud de desarrollo corta.

Otra alternativa en el diseño de curvas a régimen supercrítico la constituye el uso de curvas compuestas. Con objeto también de reducir las ondas, Knapp e Ippen (Ref. 43) realizaron experimentos con curvas formadas de una circular central de radio $r_{\rm C}$, precedida y seguida por curvas circulares de transición de radio 2 $r_{\rm C}$ (Fig. 6.43). El ángulo θ_0 de las curvas de transición se obtiene de la Ec. (6.50) sustituyendo $2r_{\rm C}$ en lugar de $r_{\rm C}$. El ángulo θ_0' es el ne cesario para lograr la deflexión total θ que requiera el cambio de dirección, esto es: θ_0' = θ - 2 θ_0

La curva compuesta con esta disposición geométrica produce una contraonda de signo opuesto a la positiva ABD en la Fig. 6.40. La onda negativa A'BC se

inicia con la curva de transición y alcanza la pared exterior justo en el punto en que principia la curva central.

Para utilizar la Ec. (6.50) es deseable calcular un valor preciso de β_1 mediante la Ec. (6.28), la cual ha sido aplicada por Harrison al diseño de curvas en canales trapeciales con buenos resultados. También puede utilizarse la Ec. (6.17) para valores aproxima—dos de β_1

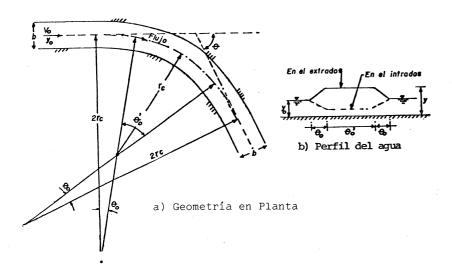


Fig. 6.43 Curva compuesta según Knapp e Ippen.

El tirante a lo largo de la margen exterior de la curva se calcula utilizando la Ec. (6.22) como se realizó en el ejemplo 6.4. Para cálculos aproximados puede utilizarse la Ec. (6.23). En la margen interior el tirante se deprime la misma magnitud (Fig. 6.43b).

Los experimentos con curvas compuestas han pro

bado que al inicio de la curva central se produce una onda positiva con la mitad de la altura de la producida en la curva circular simple. Esto implica que Δy para estas curvas es la mitad de la calculada con la Ec. (6.51) para el radio de la curva central, lo cual vale también para diseños basados en curvas de transición de forma espiral, que mejoran el funcionamiento pero complican la geometría y aumentan el costo de construcción.

En ocasiones también se utilizan umbrales sobre la plantilla del canal antes del incio y al final de la curva, a fin de producir efectos similares a los de las curvas compuestas (ref. 45). Sin embargo, tienen un gran costo de mantenimiento producen perturbaciones notables con caudales pequeños y posible cavitación cuando la velocidad es grande.

La curva compuesta puede mejorar su funcionamiento si se combina con la solución de pendiente trans versal. La magnitud de dicha pendiente queda determinada de la Ec. (6.53), utilizando el radio $2r_C$ de la forma curva de transición, y se proporciona gradualmente desde el cero al inicio de la primera curva de tran sición hasta la magnitud que debe tener al terminar la misma. Después se mantiene constante en toda la curva central y nuevamente disminuye a cero en el arco de de sarrollo de la segunda curva de transición. Por lo que se refiere a la pendiente longitudinal puede seguir cualquiera de las opciones indicadas para la curva sim ple, con la ventaja ahora de que la pendiente transver sal tiene por magnitud la mitad de la correspondiente a la curva simple por lo que disminuye el problema de las depresiones en el canal.

Ejemplo 6.8. El canal de descarga de un vertedor de de masías tiene una sección trapezoidal de 30 m de ancho de plantilla, talud 0.5:1, revestido de concreto (n = 0.015) y conduce un gasto de 3250 m³/s con una pendiente S = 0.021. Por razones topográficas es necesario diseñar una curva de 280 m de radio medio y una deflexión total aproximada de 48°. Los cálculos de flujo variado, aguas arriba de la curva, indican que el tirante al inicio de ésta es y, = 6.50 m y la velocidad V_1 = 15.0376 m/s. a) Calcular los tirantes que se presentan sobre ambas paredes del canal y la pendien te transversal necesaria. b) Diseñar la curva de mane ra que mejore el funcionamiento hidráulico.

Solución a. El área y ancho de superficie libre en la sección del canal al inicio de la curva valen: $A_1 = 216.125 \text{ m}^2$, $B_1 = 36.5 \text{ m}$, $Y_1 = 5.921 \text{ m}$. Por tanto, el número de Froude para el tirante hidráulico es:

$$F_{r_1} = \frac{15.0376}{\sqrt{9.81 \times 5.921}} = 1.973$$

valor que indica un régimen supercrítico. El bordo $1\underline{i}$ bre necesario de la Ec. (2.53) es:

B.L. =
$$0.61 + 0.0372 \times 15.0376$$
 $3\sqrt{6.5} = 1.654 \text{ m}$

De la Ec. (6.17), también se tendría que $\beta_1 = 30.4573^\circ$. Sin embargo, por tratarse de un canal trapecial, es preferible sustituir en la Ec. (6.28) y resulta que:

sen
$$\beta_1 = \frac{1}{1.973} \sqrt{\frac{\tan h (2 \text{ II } 5.921/36.5 \cos \beta_1)}{2 \text{ II } 5.921/36.5 \cos \beta_1}}$$

resolviendo la ecuación, se obtiene que:

$$\beta_i = 25^{\circ} 26' 13.49"$$

No existe aclaración precisa en cuanto a la aplicación de la Ec. (6.50) en canales trapezoidales; así que con sideramos primero el ancho real de la plantilla del $c\overline{a}$ nal, para determinar el ángulo con el que se presenta el máximo sobre la pared exterior y el mínimo sobre la interior.

Dicho ángulo vale:

$$\theta_0 = \text{ang tan} \frac{30}{(280 + \frac{30}{2}) \text{ tan } 25^{\circ} 26' 13.5''} = 12^{\circ} 4' 8''$$

Si se utiliza el ancho de superficie libre, $B_1 = 36.5$,

entonces θ_0 = 14°25'46". Para determinar la variación de tirantes sobre ambas paredes de la curva se utiliza la Ec. (6.22) y para ello es necesario calcular θ_1 Para θ = 0, Fr = 1.973 y de la Ec. (6.22) θ_1 = 48.391880° que permanece constante en todos los cálculos. Por otra parte, la energía específica antes de la curva es:

$$E = 6.50 + \frac{15.0376^2}{2g} = 18.0255$$

De la Ec. (6.21) se tiene que:

$$y = \frac{18.0255}{1 + 0.05 \, \text{Fr}^2}$$

Siguiendo el mismo procedimiento en la elaboración de la tabla 6.1 del ejemplo 6.5, se presentan para este caso los resultados de la tabla 6.3. Además, también se incluyen los cálculos utilizando la Ec. (6.23), para la determinación del tirante en la pared, siendo entonces:

$$\frac{y}{y_1} = 1.973^2 \quad \text{sen}^2 \quad (30.4573^\circ \pm \frac{\theta}{2})$$

utilizando el signo positivo para la pared exterior y el negativo para la interior.

Tabla 6.3 Variación del tirante en la curva del ejemplo 6.8 caso a.

Pared exterior									
θ	Fr	y (m)	y (m)	θ	$F_{\mathbf{r}}$	y (m)	y (m)	Δ y	Δу
	Ec.	Ec.	Ec.		Ec.	Ec.	Ec.	Ec.	Ec.
	(6.22)	(6.21)	(6.23)		(6.22)	(6.21)	(6.23)	(6.21)	(6.23)
0° .	1.973	6.500	6.500	0°	1.973	6.500	6.500	0	0
5°	1.6937	7.405	7.487	−5°	2.2966	4.956	5.560	2.449	1.927
10°	1.4404	8.847	8.513	–10°	2.6869	3.910	4.674	4.937	3.839
12°4'8"	1.3381	9.511	8.947	-12°4' 8"	2.8752	3.511	4.324	6.000	4.623
14°25'46"	1.2175	10.353	9.449	-14°25'46''	3.1147	3.081	3.939	7.272	5.510

La Fig. 6.44a muestra la variación de tirantes en las paredes, de acuerdo con la tabla 6.3. La sobreeleva—ción máxima en la curva para el ancho real de planti—lla resulta entonces:

$$\Delta y = 9.511 - 3.511 = 6.000 \text{ m}$$

y para el ancho de superficie libre:

$$\Delta v = 10.353 - 3.081 = 7.272 \text{ m}$$

En el caso de usar la Ec. (6.23), los valores de $^{\Delta}y$ son menores que los anteriores.

Al aplicar la Ec. (6.51), la sobreelevación resulta ser:

$$\Delta y = \frac{2 \times 15.0376^2 \times 36.50 \text{ m}}{280 \times 9.81}$$

Puede observar que se obtiene el mismo resultado cuando en la Ec. (6.51) se utiliza el ancho de plantilla, y una diferencia del 17% cuando se utiliza el ancho de superficie libre. A fin de simplificar la geometría, elegimos $\theta_0=14^\circ$.

Para evitar que el agua desborde el canal al rebasar el bordo libre y para uniformizar el tirante a lo ancho, conviene inclinar la plantilla. La pendiente transversal máxima de la Ec. (6.53) resulta ser:

$$S_t = \frac{15.0376^2}{9.81 \times 280} = 0.0823$$

y crece gradualmente desde cero al inicio de la curva, hasta el máximo para el ángulo θ_0 = 14°. Con este ángulo, la longitud del arco siguiendo el eje del canal es de:

$$1_{\rm C} = \frac{14^{\circ} \times \text{T}}{180} 280 = 68.417 \text{ m}$$

y para el extrados e intrados respectivamente son:

 $l_e = 72.082 \text{ m}, l_i = 64.752 \text{ m}.$

Manteniendo la pendiente longitudinal sobre el eje del canal, el desnivel entre el inicio de la curva y el punto para θ_0 resulta:

$$\Delta z = 0.021 \times 68.417 = 1.4368 \text{ m}$$

Con la pendiente transversal indicada, el desnivel entre el inicio de la curva (plantilla horizontal) y el extrados e intrados de la misma (para $\theta_0)$ respectivamente son:

$$\Delta z_e = 1.4368 - 0.0823 \times 15 = 0.202 \text{ m}$$

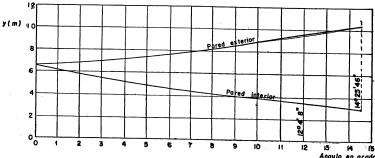
$$\Delta z_i = 1.4368 + 0.0823 \times 15 = 2.671 \text{ m}$$

Esto significa que la pendiente longitudinal media sobre el extrados de la curva es:

$$S_e = \frac{0.202}{72.082} = 0.0028$$

y para el intrados vale:

$$S_i = \frac{2.671}{64.752} = 0.04125$$


esto es, en ningún caso negativa.

La pendiente transversal y longitudinal sobre el eje deben permanecer constantes a partir de la sección de θ_0 = 14°, por un ángulo de valor: 48° - 2 x 14° = 20°, para disminuir gradualmente en el último arco de ángulo θ_0 (Fig. 6.44, b, c, d y e). Para el lado interior en este último arco, el desnivel en el sentido longitudinal vale:

$$\Delta z_i = 1.4368 - 0.0823 \times 15 = 0.202 m$$

teniendo en este caso úna pendiente longitudinal de valor S_i = 0.202/64.752 = 0.00312, que sigue siendo positiva.

Analizamos también que se cumpla la condición de que $\text{rc/B}_1\!\!>\!4~\text{Fr}_1{}^2$. Siendo la sección trapecial, considera mos que B_1 es el ancho de la superficie libre y Fr_1 el número de Froude aguas arriba de la curva; esto es resulta entonces que: rc/B=280/36.5=7.671 y que $4\text{Fr}_1{}^2=4\times1.973{}^2=15.571$, esto indica que no se satisface esta condición y es probable que no exista buen funcionamiento con este diseño.

a) Variación del tirante sobre las paredes en la curva, en el caso a del ejemplo 6.8

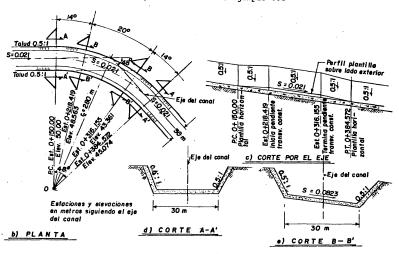


Fig. 6.44 Curva circular del ejemplo 6.8, caso a

Solución b. Para mejorar el funcionamiento, es recomendable utilizar curvas compuestas como en la Fig. 6.43. El radio de las curvas de transición es 2 r_C = 560 m y de la Ec. (6.50), para el diseño de superficie libre el ángulo θ_0 de las mismas vale:

$$\theta_0 = \text{áng tan} \frac{36.5}{(560 + 36.5/2) \tan 25.^{\circ} 26! \cdot 13.5!!} = 7^{\circ} 33' \cdot 35"$$

Para simplificar la geometría, utilizamos 7° 30'.

El ángulo de la curva central es entonces:

$$\theta_0' = 48^\circ - 2 \times 7^\circ 30' = 33^\circ$$

y su radio se mantiene de 280 m.

La variación del tirante en la primera curva de transición es la misma de la Fig. 6.50b hasta el valor del án gulo $\theta_0=7^\circ$ 30', para el cual se lee como tirante máximo sobre la pared exterior: y máx = 8.0 m y como mínimo en el interior y mín = 4.40 m. Esto implica una sobreelevación máxima de aproximadamente 3.6 m que es la mitad de la calculada en la solución a.

Al sustituir como radio de la curva de transición a 560 m, dela ec. (6.51) resulta $\Delta y = 3.0$ m.

En ocasiones ha resultado conveniente combinar la solución de curva compuesta y pendiente transversal, para uniformizar los tirantes en ambos lados del canal. Si se elige una solución de este tipo, la pendiente transversal máxima en la curva, de la Ec. (6.53) resulta ser la mitad de la obtenida en la solución a, esto es: St = 0.04116. De la misma manera, crece gradualmente desde cero, al inicio de la primera curva de transición hasta este máximo al iniciar la curva central ($\theta_0 = 7^{\circ}$ 30'). La longitud del arco en las curvas de transición, siguiendo el eje del canal, es de:

$$l_t = \frac{7^{\circ} \ 30! \times I}{180} \times 560 = 73.3038 \text{ m}$$

y para el extrados e intrados respectivamente son: le = 75.2673 m y l_i = 71.3403 m.

Manteniendo la pendiente longitudinal sobre el eje, el desnivel entre el inicio y final de las curvas de tran sición es de:

$$\Delta z = 0.021 \times 73.3038 = 1.5394 \text{ m}$$

Para la pendiente transversal máxima calculada, el desnivel entre el inicio de la curva de transición (planti lla horizontal) y las paredes de la misma, respectivamente, son:

$$\Delta z_e = 1.5394 - 0.04116 \times 15 = 0.922 \text{ m}$$

 $\Delta z_i = 1.5394 + 0.04116 \times 15 = 2.1568 \text{ m}$

lo que indica que no hay pendiente negativa sobre ningu na pared de la curva.

Las pendientes transversal y longitudinal sobre el eje del canal se mantienen constantes sobre toda la curva central, para disminuir la primera gradualmente sobre la curva de transición final hasta hacer la plantilla horizontal. La Fig. 6.45 muestra la geometría de esta solución combinada.

6.4.4 Teoría del gasto unitario constante

La sobreelevación del tirante en la pared exterior de una curva y el aumento de velocidad en la pared interior implican una concentración del gasto q (por unidad de ancho de plantilla) en la proximidad de la úl tima. Según Henderson (Ref. 13) la utilización de una pendiente transversal variable en la plantilla de un ca nal rectangular, que uniformice la distribución de q a lo ancho de la sección transversal permite que el flujo vuelva más rápidamente a su estado original después de pasar la curva. Lo anterior se consigue conservando la hipótesis inicial del movimiento en vórtice libre, de manera que, siendo q = vy, de la Ec. (6.30) se tiene:

$$\frac{q}{k} = \frac{y}{r} = constante$$
 (6.54)



Fig. 6.45 Curva compuesta del ejemplo 6.8 solución b.

La superficie libre se encuentra en su más alto nivel en la pared exterior y por ello es conveniente forzar a que el tirante y el nivel de plantilla sobre dicha pared se mantengan iguales a los valores originales aguas arriba de la curva. La altura z de los restantes puntos de la plantilla queda por encima o por de bajo del nivel de plantilla de la pared exterior y el

nivel de la superficie en todos los puntos queda debajo del nivel de la superficie libre sobre la pared exterior (Fig. 6.46).

Si y_1 y V_1 representan tirante y velocidad an tes de la curva, r_C el radio exterior de la misma y E la energía referida al nivel de plantilla aguas arriba, (la que permanece constante a través de la sección transversal del canal), se tiene que:

$$E = z + y + \frac{v^2}{2g} = y_1 + \frac{V_1^2}{2g}$$
 (6.55)

De la Ec. (6.54), y = qr/k; y de la Ec. (6.30): $k = vr=V_1r_e$, por lo cual, de la Ec. (6.55) resulta que:

$$z = E - (y + \frac{v^2}{2g}) = E - (\frac{q r}{V_1 r_e} + \frac{{V_1}^2 r_e^2}{2g r^2}) = E - y_1 (\frac{r}{r_e} + \frac{F_{r_1}^2}{2} \frac{r_e^2}{r^2})$$
 (6.56)

Esta ecuación define el perfil transversal de la plantilla del canal y, en ella, F_{r_1} es el número de Froude aguas arriba de la curva.

Para aclarar algunos aspectos importantes, conviene hacer algunas consideraciones adicionales.

Debido a que y/r es constante para cantidades diferenciales en la Ec. (6.54), se puede también escribir que:

$$\frac{\mathrm{d}y}{\mathrm{d}r} = \frac{y}{r} \tag{6.57}$$

y puesto que E es constante, se tiene que:

$$\frac{dE}{dr} = \frac{d}{dr} (z + y + \frac{v^2}{2g}) = \frac{dz}{dr} + \frac{dE}{dr} = 0$$

Tomando en consideración la Ec. (3.3b), la ecuación anterior también es:

$$\frac{dz}{dr} + \frac{dE}{dy}\frac{dy}{dr} = \frac{dz}{dr} + (1 - F_r^2)\frac{dy}{dr} = 0$$

y de aquí resulta que:

$$\frac{dz}{dr} = (F_r^2 - 1) \frac{dy}{dr} = (F_r^2 - 1) \frac{y}{r} = \frac{v^2}{gr} - \frac{y}{r}$$
 (6.58)

La Ec. (6.58) indica que en caso de régimen subcritico ($F_r < 1$): dz/dr < 0, ya que y/r será siempre positivo; esto significa que la plantilla del canal debe ascender hacia el lado interior de la curva. En caso de régimen supercrítico ($F_r > 1$), dz/dr > 0 y la plantilla debe descender hacia el lado interior de la curva ($F_{ig} : 6.46$).

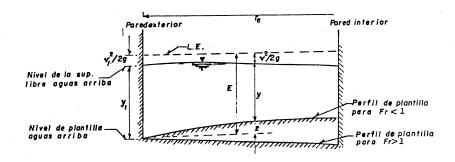


Fig. 6.46 Perfil de la plantilla en un canal curvo, necesario para que q sea constante a través de la sección.

Cuando el radio de la curva es grande, se pueden usar valores medios de y, Fr y de la Ec. (6.58) obtener una pendiente transversal constante de valor aproximadamente igual al dado por la Ec. (6.53) $(y/r \approx 0)$.

En caso de régimen subcritico, el número de Frou de sobre la pared interior es mayor que el correspondien te Fr_1 aguas arriba de la curva y puede alcanzar el valor del crítico (Fr=1); esta situación debe evitarso

modificando el radio de la curva. Para detectar estas condiciones, la Ec. (6.56) para la pared interior se puede escribir como sigue:

$$\frac{E - z_{\dot{1}}}{y_{1}} = \frac{r_{\dot{1}}}{r_{e}} + \frac{Fr_{\dot{1}}^{2}}{2} \frac{r_{e}^{2}}{r_{\dot{1}}^{2}}$$
 (6.59)

Pero además siendo que:

$$E - z_i = y_i + \frac{v_i^2}{2g} = y_i \left(1 + \frac{v_i^2}{2g y_i}\right) = y_i \left(1 + \frac{Fr_i^2}{2}\right)$$

Haciendo $F_{ri} = 1$ en la ecuación anterior y sustituyendo la Ec. (6.54), se tiene que

$$\frac{E - z_1}{y_1} = \frac{3}{2} \frac{y_1}{y_1} = \frac{3}{2} \frac{r_1}{r_e}$$

Al sustituir este resultado en la Ec. (6.59) y simplificar, se obtiene que:

$$\frac{r_{1}}{r_{0}^{2}} = F_{r_{1}}^{2/3} \tag{6.60}$$

Si $\ensuremath{r_C}$ es el radio al eje del canal, la ecuación anterior también es:

$$\frac{r_C - b/2}{r_C + b/2} = F_{r_1}^{2/3}$$

y de aquí despejando a r_C/b se obtiene:

$$\frac{r_{\rm C}}{b} = \frac{1}{2} \frac{1 + Fr_1^{2/3}}{1 - Fr_1^{2/3}}$$
 (6.61)

Las Ecs. (6.60) y (6.61) indican las relaciones entre radios con las que se alcanza el régimen crítico sobre la pared interior de una curva, con la depresión en la plantilla como se muestra en la Fig. 6.46, para régimen subcrítico original ($F_{\rm rl}$ < 1). A fin de evitar este problema, es necesario que $r_{\rm C}/b$ sea mayor que el

proporcionado por la Ec. (6.61).

La Fig. 6.47 muestra la representación gráfica de la Ec. (6.61).

Según Henderson, el perfil transversal de la plantilla en una curva, diseñado de acuerdo con la Ec. (6.56), debe suprimir los disturbios debidos al movi—miento diagonal del filamiento de máxima velocidad indicado en la Fig. 6.32b

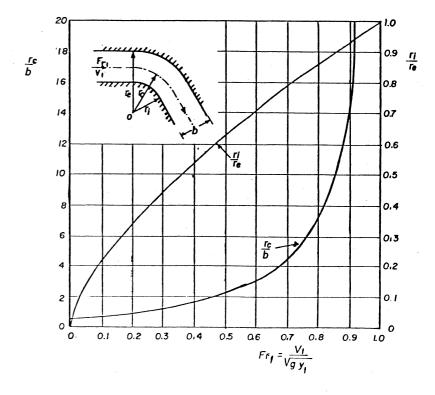


Fig. 6.47 Magnitud de los radios de una curva en régimen subcrítico, para los que ocurre tirante crítico en la pared interior.

Ejemplo 6.9. a) Para el canal del ejemplo 6.7 calcular, con la teoría del gasto unitario constante, el radio para el que se formaría tirante crítico sobre la pared in terior de la curva. b) Utilizando la misma teoría, calcular el perfil transversal de la plantilla para el radio de diseño $r_{\rm C}$ = 40 m. c) Con la misma teoría calcular el perfil transversal de la plantilla para el caso de que el tirante antes de la curva sea y_1 = 1.20 m, la pendiente longitudinal S_0 = 0.016 y un radio de 80m.

Solución a) Con $F_{\rm rl}$ = 0.472, de la Ec. (6.61) o de la Fig. 6.47 resulta que $r_{\rm C}/b$ = 2. Esto es, el radio al eje del canal para el que se produce tirante crítico es de 16.00 m.

Solución b) Haciendo las sustituciones necesarias en la Ec. (6.56), resulta que

$$z = 3.889 - 3.5 \left(\frac{r}{44} + \frac{0.472^2}{2} \frac{44^2}{r^2}\right) = 3.889 - (0.07955r + \frac{754.79219}{r^2})$$

Con esta ecuación resultan los valores de z, que indica la tabla 6.4.

Tabla 6.4 Coordenadas del perfil transversal del piso en el ejemplo 6.4 caso b.

Según los resultados de la citada tabla, el nivel del pi so en el lado interior de la curva quedaría 0.443 m arrī ba del correspondiente al lado exterior y que los resultados según este procedimiento son exagerados. Normal mente no se peraltan las curvas en régimen subcrítico.

Solución c) Para el tirante dado, los elementos geométricos de la sección son: A = 9.6 m², P = 10.40 m y Rh = 0.923 m. De la fórmula de Manning V_1 = 7.495 m/s. Además, el gasto, número de Froude y energía específica respectivamente son: Q = 71.95 m³/s F_{T1} = 2.184 y

 ${\tt E} = 4.063 \; {\tt m}, \; {\tt por} \; {\tt lo} \; {\tt que} \; {\tt el} \; {\tt régimen} \; {\tt del} \; {\tt escurrimiento} \; {\tt es} \; {\tt supercrítico}.$

En caso de utilizar pendiente transversal constante, de la Ec. (6.53) ésta sería

$$S_t = \frac{7.495^2}{9.81 \times 80} = 0.0716$$

Haciendo las sustituciones necesarias en la Ec. (6.56), se obtiene que

$$z = 4.063 - 1.2 \left(\frac{r}{84} + \frac{2.184^2 R^2}{2 r^2} \right) = 4.063 - (0.01429r + \frac{20.193.66}{r^2})$$

Con esta ecuación resultan los valores de z que indica la tabla 6.5.

Tabla 6.5 Coordenadas del perfil de la plantilla del ejemplo 6.9c r (m) 76 77 78 79 80 81 82 83 84 z (m) -0.519 -0.443 -0.37 -0.301 -0.235 -0.172 -0.0112 -0.054 0

De acuerdo con los resultados de la tabla 6.5, la pen—diente transversal medía sería:

$$S_t = \frac{0.519}{8} = 0.0649$$

Que es 9 porciento menor que la calculada mediante la Ec. (6.53). Sin embargo, la pendiente transversal va—riable es más complicada de construir.

6.5 Cambios de dirección vertical

El perfil del piso de un canal generalmente se diseña para conformarlo a las condiciones topográficas y geológicas del sitio, mediante tramos rectos unidos por curvas verticales.

Los cambios de dirección vertical en la plantilla se requieren para unir dos tramos de pendiente distinta o

bien cuando por razones hidráulicas es necesario proporcionar una determinada geometría al perfil de la plantilla. Esto último puede presentarse al diseñar la conexión entre el pié de un cimacio y su canal de descarga, o bien al diseñar una cubeta deflectora.

Las curvas verticales bruscas deben evitarse a fin de prevenir perturbaciones del flujo en el canal. Dichas perturbaciones son más sencillas de considerar que las resultantes en un cambio de dirección horizontal, pero es necesario diseñar curvas de conexión que tomen en consideración los siguientes aspectos:

- a) Las curvas convexas (Fig. 1.7b) deben ser suficientemente graduales a fin de mantener presiones positi vas y evitar que el escurrimiento se separe del piso.
- b) Las curvas cóncavas (Fig. 1.7a) deben tener un radio de curvatura suficientemente grande a fin de dismi nuir las fuerzas dinámicas sobre el piso, producidas por la fuerza centrífuga resultante del cambio de di rección.
- c) La geometría de la curva de transición en la plantilla debe ser lo más sencilla posible, preferentemente circular o parabólica, a fin de simplificar su
 construcción. En el caso de canales con flujo sub—
 crítico de pequeña velocidad, los cambios de pendien
 te pueden ser bruscos si esto no implica erosión en
 el piso.
- d) En el análisis del perfil de flujo sobre curvas verticales se debe considerar el efecto que tiene la curvatura de las líneas de corriente y la aceleración centrífuga sobre la presión calculada en la planti—lla, de la misma manera expuesta en el subcapítulo 1.6.

Para evitar la tendencia del agua a separarse del piso y disminuir la presión de contacto, el perfil de una curva convexa debe ser considerablemente más tendido que la trayectoria de un chorro descargando libremente, lanzado bajo una carga igual a la energía específica E del escurrimiento en la sección que inicia la curva. La Fig. 6.48 muestra la curva de conexión bajo las condiciones anteriores.

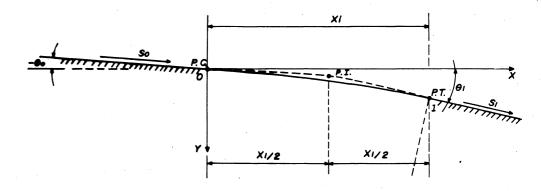


Fig. 6.48 Curva vertical convexa.

De acuerdo con los resultados del ejemplo 4.13 del Vol. I y lo expresado por la Ec. (8.7), la forma de la curva de transición para el sistema coordenado mostrado en la Fig. 6.48 está definida por la ecuación:

$$y = x \tan \theta_0 + \frac{x^2}{4 K E \cos^2 \theta_0}$$
 (6.62)

donde θ_0 es el ángulo de inclinación del piso en el tramo aguas arriba de la curva.

Con excepción del factor K, esta ecuación corresponde a la de un chorro descargando libremente desde un orifi— cio inclinado el ángulo θ_0 . Para asegurar presiones po sitivas sobre toda la superficie de contacto en la curva, el valor de K debe ser igual o mayor que 1.5.

La derivada de la ecuación es:

$$\frac{dy}{dx} = \tan \theta_0 + \frac{x}{2 K E \cos^2 \theta_0}$$

Para obtener las coordenadas del punto en que la curva se vuelve tangente al segundo tramo, se iguala dy/dx

Con tan θ_1 y resulta:

$$\tan \theta_1 = \tan \theta_0 + \frac{x}{2 \text{ K E } \cos^2 \theta_0}$$

Siendo la abscisa del punto 1 de tangencia:

$$x_1 = 2 \text{ KE } \cos^2 \theta_0 \quad (\tan \theta_1 - \tan \theta_0) \quad (6.63)$$

y la ordenada \mathbf{y}_1 se obtiene sustituyendo en la ecuación del perfil del piso.

El piso puede diseñarse con la forma parabólica proporcionada por la ecuación (6.62) entre los puntos 0 y 1. Sin embargo, para simplificar su geometría y construcción, el perfil se puede también asimilar a una curva circular vertical que inicia en el origen (punto P.C.) y termina en el punto 1 (punto P.T.), donde P.I. es el punto de inflexión. El ángulo de inflexión es $\theta=\theta_1-\theta_0$

En caso de curvas verticales cóncavas se debe evitar que la fuerza centrífuga produzca sobre el piso presiones dinámicas positivas elevadas. Un valor máximo de $p = 489 \text{ kg/m}^2$ (100 lb/ft²) (Ref. 21) se considera aceptable, de manera que con dicho valor en la Ec. (1.17), el radio de curvatura necesario para no rebasar dicha presión sería:

$$R \ge 0.21 \text{ V}^2 \text{d}$$
 (6.64)

También se recomienda que:

$$R \ge 10 \text{ d} \tag{6.65}$$

y se elige el valor que satisfaga simultáneamente ambas desigualdades, donde

- d tirante medido en dirección perpendicular a la plantilla del canal, en m.
- R radio de curvatura en m.

V velocidad media del escurrimiento, en m/s.

En el caso de la curva vertical para unir el perfil de un cimacio con el canal aguas abajo, se recomienda que el radio R no sea menor que 5d.

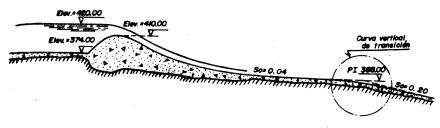
Ejemplo 6.10. El canal de descarga de una obra de excedencias (Fig. 6.49) tiene inicialmente una pendiente longitudinal $S_0=0.04$ y después es necesario cambiar al valor $S_1=0.20$. La elevación del punto de infle—xión donde cambia la pendiente es la 388.00. El canal es muy ancho y el gasto unitario que conduce es de $56.3~\text{m}^3/\text{s/m}$. Los cálculos de flujo variado indican que la velocidad en el P.I. es de 22.1~m/s. Diseñar la curva vertical de transición entre ambas pendientes.

Solución. Suponiendo que en la Fig. 6.48 la distancia horizontal $x_1/2=6.50~\text{m}$ y con y = 56.3/22.1=2.55~m, la energía específica aproximada en el P.C. es

$$E = 2.55 + \frac{(22.1)^2}{2g} - 0.04 \times 6.5 = 27.181 \text{ m}$$

Siendo tan θ_0 = 0.04, cos θ_0 = 0.9992 y tan θ_1 = 0.20, la ecuación del perfil longitudinal del piso resulta de la Ec. (6.62) para K = 1.5, como sigue:

$$y = 0.04 x + 0.006142 x^2$$


y de la Ec. (6.63), la abscisa del punto de tangencia P.T vale: x_1 = 13.026 m, por lo que el valor supuesto para $x_1/2$ fue correcto. La magnitud de la ordenada es entonces

$$y_1 = 0.04 \times 13.026 + 0.006142 \times 13.026^2 = 1.563 m$$

El perfil del piso puede seguir la ecuación parabólica o bien asimilarse a una curva circular tangente en P.C y P.T. Si el perfil es parabólico, sus coordenadas se indican en la tabla 6.6 y la Fig. 6.49b muestra la curva de transición.

Tabla 6.6	Coordenadas	de. la	curva	vertical	de	transición	del	
Fiemplo 6.10								

х	(m)	0	1	2	3	4 .	5	6
у	(m)	0	0.046	0.105	0.175	0.258	0.354	0.461
x	(m)	7	8	9 .	10	11	12	13.026
У	(m)	0.581	0.713	0.858	1.014	1.183	1.364	1.563

a) Perfil longitudinal

Fig. 6.49. Perfil longitudinal de la obra de excedencias del ejemplo 6.10.

6.6 Obstrucciones

6.6.1 Aspectos generales

El control del flujo de agua en un canal puede requerir de pilas intermedias y estrechamientos, a fin de apoyar compuertas. También el cruzamiento de una vía por encima del canal suele necesitar de pilas de apoyo intermedio y de estribos laterales. Las rejillas

colocadas a lo ancho del canal sirven para eliminar basura y objetos flotantes. Todas ellas presentan una obstrucción al paso del agua que produce efectos similares al de una contracción en el área de la sección transversal, generando un remanso hacia aguas arriba y un incremento en la altura de bordos.

Por esta razón, es importante predecir, con seguridad razonable, la magnitud del remanso causado por estas obstrucciones. El empuje del flujo sobre las pilas es bastante pequeño comparado con otras solicitaciones y tiene interés en su diseño estructural. A reserva de presentar con más amplitud el problema para el caso de un río, aquí se hace una exposición de las leyes generales de la obstrucción por pilas que sirva de apoyo a otros problemas similares.

6.6.2 Umbrales de fondo

Antes de presentar las obstrucciones debidas a pilas de puentes, conviene estudiar los efectos producidos por los umbrales colocados sobre la plantilla de un canal rectangular en régimen subcrítico (Fig. 6.50). Como en casi todas las obstrucciones, las separaciones que se producen en la corriente conducen a pérdidas de energía que es necesario determinar.

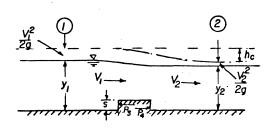


Fig. 6.50 Obstrucción debida a un umbral de fondo.

Como en el caso de los escalones (Figs. 6.9 a y b), es posi ble estimar la magni tud de la pérdida de energía del escurrimiento sobre un umbral de fondo. Para ello se recurre a la ley de impulso y can tidad de movimiento que, para el umbral y las dos secciones 1 y 2 de la Fig. 6.50, ahora se escribe como sique

$$P_1 - P_2 - P_3 + P_4 = \frac{\gamma Q}{g} (V_2 - V_1)$$

donde se tiene que: $P_1 = \gamma b \ y_1^2/2$, $P_2 = \gamma b \ y_2^2/2$ y empíricamente $P_3 - P_4 = \frac{1}{2}$ c γ bs $(y_1 - y_2)$, siendo c un coeficien te de corrección. Además, de la ecuación de continuidad,

se tiene que: $V_2=V_1y_1/y_2$ y $Q_1=$ V b y_1 . Por tanto, al sustituir y ordenar la ecuación anterior, resulta

$$y_2^2 - y_1^2 + 2 Fr_1^2 y_1^2 (\frac{y_1}{y_2} - 1) + cs (y_1 - y_2) = 0$$

De manera análoga al caso de los escalones, la solución es

$$\frac{y_2}{y_1} = \frac{1}{2} \left[\sqrt{(1 - c \frac{s}{y_1})^2 + 8 F_{r_1}^2} - (1 - c \frac{s}{y_1}) \right]$$
 (6.66)

que es idéntica a la Ec. (6.3), sin embargo, en este caso, hay algunas diferencias en el cálculo del coeficiente c. Despreciando la fricción contra las paredes y considerando que sobre el peralte del umbral la presión se distribuye hidrostáticamente, se tiene que

$$P_3 \approx \frac{1}{2} \text{ Ybs } (2 y_1 - s)$$

$$P_4 \approx \frac{1}{2} \gamma b s (2 y_2 - s)$$

y la diferencia

$$P_3 - P_4 \approx \gamma b s (y_1 - y_2)$$

Por tanto, el coeficiente c≈2

La pérdida de energía es entonces

$$h_C = y_1 - y_2 + \frac{V_1^2}{2g} - \frac{V_2^2}{2g}$$

Siendo además: $V_1 \ y_1 = V_2 \ y_2$, de la ecuación anterior se obtiene que

$$\frac{h_C}{y_1} = 1 - \frac{y_2}{y_1} - \frac{1}{2} F_{r_1}^2 \frac{1 - (y_2/y_1)^2}{(y_2/y_1)^2}$$
 (6.67)

donde y_2/y_1 se obtendría de la ec. (6.66).

Si la pérdida se expresa en la forma $h_C = K V_2^2/2g$,

el coeficiente K vale

$$K = \left(\frac{y_2}{y_1}\right)^2 \left[1 + 2 \frac{1 - y_2/y_1}{F_{r_1}^2} \right] - 1$$
 (6.68)

6.6.3 Pilas de puente

La obstrucción producida por una pila de puente o por rejillas crea un comportamiento hidráulico resultado de la combinación del efecto de una contracción del área de la sección transversal, seguida de una ampliación de la misma. Esto tiene validez mientras no se produzca un cambio en el régimen del escurrimiento.

La discusión se puede centrar sobre las Figs. 6.51 que muestran el esquema básico más sencillo de pi— las colocadas en dirección paralela al flujo, inicialmen te uniforme, en un canal de sección rectangular de pen— diente pequeña u horizontal. El flujo original puede ser subcrítico o supercrítico. El primero es el caso más común, el segundo ocurre poco en la práctica y el efecto de las pilas consiste en dividir el escurrimiento, produciendo una estela de disturbios hacia aguas abajo, sin transmitir más efectos hacia aguas arriba que los pura— mente locales en el entorno de la nariz de la pila; la magnitud de aquellos depende de la forma de ésta.

La Fig. 6.51b muestra el comportamiento de la su perficie del agua, en caso de flujo uniforme subcrítico, el cual, hacia aguas arriba, genera un remanso con per—fil M_1 . Entre las pilas se produce un flujo acelerado con disminución del tirante (aunque siempre mayor que el crítico) y que es el resultado de la reducción en el área. Aguas abajo de la pila, más allá de cualquier estela turbulenta creada por el obstáculo, las condiciones del flujo son cercanas al uniforme.

Este flujo se denomina tipo I y es el que se encuentra con más frecuencia en la práctica.

La Fig. 6.51c muestra el comportamiento en el caso de flujo uniforme originalmente subcrítico y que también genera hacia aguas arriba un remanso con perfil M_1 . Entre las pilas, el flujo se acelera y disminuye el tirante hasta valores iguales o menores que el crítico, para después expanderse aguas abajo de la pila. En esta

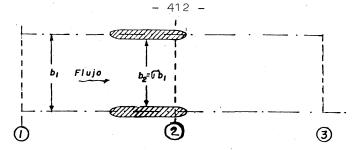


Fig. 6.51a Geometría en planta de pilas en dirección del flujo

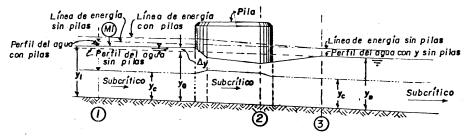


Fig. 6.51 b Elevación de pilas para un flujo subcrítico. Tipo I

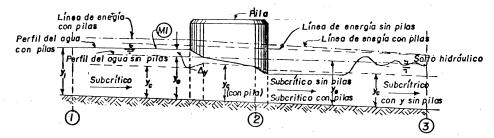
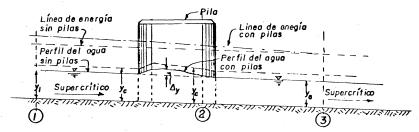



Fig. 6.51 c Elevación de pilas para un flujo originalmente subcrítico con cambio a supercrítico. Tipo II

g. 6.51 d Elevación de pilas para un flujo originalmente supercrítico sin cambio de régimen. Tipo III

expansión puede llegar a producirse un salto hidráulico, de intensidad cada vez mayor, en la medida que el tirante entre pilas disminuye por debajo del crítico. En cualquier caso se utiliza el mismo criterio para el análisis del flujo de este tipo.

La Fig. 6.51d muestra el comportamiento del perfil del agua en el caso de flujo supercrítico antes y después de las pilas, sin generar disturbios hacia aguas arriba y es del tipo III. Para los dos primeros tipos de flujo, la sobreelevación o remanso ^y se define como la diferencia causada en el nivel del agua de la sección 1, por la introducción de las pilas en la corriente. Esta sobrelevación se produce por la presencia de diferentes pérdidas de energía por el paso del agua a lo largo de la estructura y que son: a) La pérdida al pasar de la sección 1 a la zona entre pilas, debida al efecto de las separaciones, vórtices, etc. b) Pérdida por fricción entre las pilas, por el incremento de la velocidad. c) Pérdida por ampliación al pasar de la sección 2 a la 3.

La importancia de las pérdidas de energía depende de las modificaciones que se introduzcan en el flujo. Por ejemplo, si la relación de contracción $\sigma=b_2/b_1$ es grande (0.5 o más), sería posible admitir que $E_1=E_2$ y $M_2=M_3$.

Esto falla debido a la distribución no uniforme de la velocidad a través del espacio entre pilas y a la fricción sobre las caras de las pilas, sin embargo para fines de estimación teórica del grado de estrangulamiento y tipo de flujo entre pilas, es posible aceptar estas dos condiciones.

Aceptando que $E_1 = E_2$ y que el flujo en la sección 2 es crítico, se tiene que

$$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g}$$
 (6.69)

$$y_1 (2 + F_{r_1^2}) = y_2 (2 + F_{r_2^2})$$
 (6.70)

donde F_{r_1} y F_{r_2} son los números de Froude en las secciones 1 y 2.

Por otra parte, de la ecuación de continuidad

$$V_1 \ b_1 \ y_1 = V_2 \ b_2 \ y_2$$

o bien

$$F_{r_1}^2 y_1^3 = F_{r_2}^2 c^2 y_2^3$$
 (6.71)

Eliminando $\mathbf{y_1}$ y $\mathbf{y_2}$ de las Ecs. (6.70) y (6.71), resulta que

$$\sigma^{2} = \frac{Fr_{1}^{2} (2 + Fr_{2}^{2})^{3}}{Fr_{2}^{2} (2 + Fr_{1}^{2})^{3}}$$

Cuando el flujo en la sección 2 es crítico, $F_{\rm r2}$ = 1 y el valor de σ , para el que se satisface esta condición, resulta

$$\sigma^2 = \frac{27 F_{n_1^2 L}^2 L}{(2 + F_{n_1^2 L})^3}$$
 (6.72)

Esto también significa que, para un σ dado, el flujo a través de la obstrucción es crítico si F_{ri} es igual al calculado de la Ec. (6.72), o sea a F_{ri} L.

Si F_{r_1} es menor, el comportamiento del flujo será del tipo I; si es igual o mayor (pero siempre menor que el crítico), el flujo será del tipo II. Para este último caso se tienen condiciones de contracción bastante severas. La Fig. 6.52 presenta una solución gráfica de la Ec. (6.72) que facilita los cálculos. La curva de dicha figura contiene los puntos para los cuales $F_{r_1} = F_{r_1}L$.

En ocasiones,el desarrollo anterior se realiza aceptando que $\rm E_2=E_3$, obteniendo la misma Ec. (6.72), pero con $\rm F_{r_3\,L}$ en lugar de $\rm F_{r_1L}$. Sin embargo, el desarrollo con esta suposición es más criticable.

Otra manera de efectuar un desarrollo similar es aceptando que $M_2 = M_3$. De la Ec. (4.2) se tiene que:

$$\frac{Q^2}{gA_2} + \frac{y_2}{2}A_2 + \frac{y_2}{2}(b_3 - b_2)y_2 = \frac{Q^2}{gA_3} + \frac{y_3}{2}A_3$$

Siendo $b_3 = b_2/\sigma$ y factorizando, se obtiene que

$$A_{2}y_{2}\left[\begin{array}{ccccc} \frac{Q^{2}}{g A_{2}^{2} y_{2}} + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{\sigma} - 1\right)\right] = A_{3}y_{3}\left(\frac{Q^{2}}{g A_{3}^{2} y_{3}} + \frac{1}{2}\right)$$

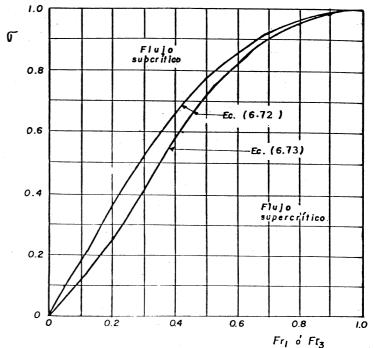


Fig. 6.52 Determinación del tipo de flujo a través de pilas de puente.

Al simplificar resulta

$$(F_{r_2}^2 + \frac{1}{2\sigma}) = \frac{1}{\sigma} (\frac{y_3}{y_2})^2 (F_{r_3}^2 + \frac{1}{2})$$

Por otra parte, de la ecuación de continuidad y de manera similar a la Ec. (6.71) se tiene

$$\frac{y_3}{y_2} = (\sigma \frac{F_{r_2}}{F_{r_3}})^{2/3}$$

la cual, sustituída en la anterior y aceptando que en la sección 2 el flujo es crítico (F_{r2} = 1), se obtiene fi—nalmente que

$$\sigma = \frac{(2 + 1/\sigma)^3 F_{r_3 L}^4}{(2 F_{r_3 L}^2 + 1)^3}$$
 (6.73)

La Ec. (6.73) permite clasificar el flujo de la misma manera que la Ec. (6.72) y es probablemente más correcta en sus hipótesis y más útil en sus aplicaciones debido a que las variables independientes que intervienen son las de la sección 3, inicialmente conocidas. La Fig. 6.52 presenta también la solución gráfica de la Ec. (6.73).

Diversos autores han estudiado y derivado ecuaciones para el comportamiento del flujo en el problema que nos ocupa. Weisbach, en 1855, (Ref. 46), de rivó una fórmula en base a consideraciones teóricas poco convincentes y su aplicación proporciona resultados distintos de los obtenidos experimentalmente.

d'Aubuisson, en 1840 (Ref. 47), obtuvo otra expresión aceptando que $E_1=E_2$; esto es, con $V_2=Q/K_A$ b_2 y_2 en la Ec. (6.69) (donde K_A es un coeficiente de contracción), al simplificar se obtiene

$$Q = KA b_2 y_2 \sqrt{2g (y_1 - y_2) + V_1^2}$$
 (6.74)

Considerando que $y_2 \simeq y_3$ y que $y_1 - y_3 = \Delta y$, la

fórmula queda finalmente

$$Q = K_{A} b_{2} y_{3} \sqrt{2g \Delta y + V_{1}^{2}}$$
 (6.75)

KA depende principalmente del grado de contracción del canal y de la forma y orientación de las pilas; varía entre 0.9 y 1.05 y la tabla 6.7 proporciona valores experimentales de este coeficiente. Los resultados de la fórmula de d'Aubuisson son sólo aproximados, debi do a las hipótesis introducidas en su obtención.

La fórmula de Nagler (1918) (Ref. 48) es

$$Q = K_{N} b_{2}\sqrt{2g} \quad (y_{3} - \theta \frac{V_{3}^{2}}{2g}) \sqrt{\Delta y + \beta \frac{V_{1}^{2}}{2g}} \quad (6.76)$$

Donde: K_N , coeficiente que depende del grado de contracción del canal y de las características de las pilas; la tabla 6.7 proporciona valores experimentales de este coeficiente. θ , factor de ajuste en la reducción del tirante y_3 a y_2 que varía desde cero para efectos de contracción pequeños, hasta valores mayores cuando crece dicho efecto, siendo 0.3 un valor promedio. β es un coeficiente que corrige el efecto de distribución irregular de la velocidad V_1 y que varía con la relación de contracción σ , como se indica en la Fig. 6.5 $\overline{3}$.

Th. Rehbock (Ref. 50), en 1921, publicó una serie de fórmulas experimentales para determinar el valor Δy . Estas fueron simplificadas por Reh (Ref. 51), en 1958, para obtener una sola que es

$$\Delta y = \frac{a_2}{A_3} \left[\delta - \frac{a_2}{A_3} (\delta - 1) \right] \left[0.4 + \frac{a_2}{A_3} + 9 \left(\frac{a_2}{A_3} \right)^{\frac{3}{3}} \right] (1 + 2 \frac{V_3^2}{2g y_3}) \frac{V_3^2}{2g}$$
 (6.77)

En esta ecuación: a_2 es el área ocupada por las pilas debajo del nivel del agua, A_3 el área hidráulica en la sección 3, δ es un coeficiente que depende de la forma de la pila según la Fig. 6.54 y Y_3 el tirante hidráulico o medio en la sección original. La Ec. (6.77)

Tabla 6.7 Valores experimentales de K_A , K_N y K en las Ecs. (6.75), (6.76) y (6.77), obtenidos por Yarnell (Ref. 49)

				Relac	ión de	contr	acción	σ			
Tipo de pila	0.5		0.6		0.	7	0.	8	0.	Κ _Υ	
	ка	KN	KA	KN	Кд	KN	Кд	KN	КА	K _N	
1. Nariz y cola de for ma cuadrada	0.97	0.89	1.00	0.87	1.02	0.86	1.02	0.87	0.96	0.91	1.25
2. Nariz y cola de for ma semicircular.	1.31	1.11	1.26	1.03	1.20	0.95	1.13	0.92	0.99	0.94	0.9
3. Nariz y cola de for ma triangular a 90°						0.92	. • • • •	0.94	••••	0.95	1.05
4. Doble cilindro						0.88		0.89		0.91	1.05
5. Doble cilindro uni- do con diafragma					• • • •	0.88		0.89		0.91	0.95
6. Nariz y cola de forma lenticular. (Formada por dos arcos tangentes con la pared de la pila y de radio igual a dos veces el espesor).					1.22	0.97	1.14	0.94	1.00	0.95	0.9

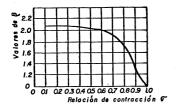


Fig. 6.53 Valores de β en la fórmula de Nagler (ec. 6.76)

se aplica a cualquier forma en la sección del canal.

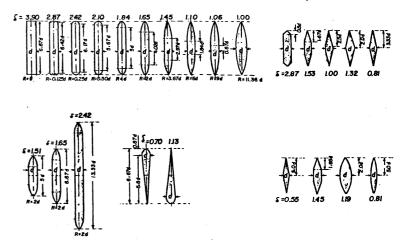


Fig. 6.54 Coeficiente & en la ec. (6.77) según Reh (ref. 51)

La Ec. (6.77) es válida aún en el caso de cana—les rectangulares donde cambia el ancho de plantilla. En el caso de ancho constante: $a_2/A_3=$ 1 – $\sigma=\alpha$ y puesto que Δy = y_1 – y_3 , de la Ec. (6.77), con Fr_3^2 = V_3^2/g y_3 se obtiene que

$$\frac{y_1}{y_3} = 1 + \alpha \left[\delta - \alpha (\delta - 1) \right] \left[0.4 + \alpha + 9 \alpha^3 \right] (1 + Fr_3^2) \frac{Fr_3^2}{2} (6.78)$$

De la ecuación de energía entre las secciones 1

y 3, la pérdida de energía hr vale

$$\frac{h_{\Gamma}}{y_3} = \frac{y_1}{y_3} - 1 + \frac{V_1^2 - V_3^2}{2g y_3} = \frac{y_1}{y_3} + \frac{1}{2} \left(\frac{V_1^2}{g y_3} - F_{\Gamma 3}^2 \right) - 1$$

Además, de la ecuación de continuidad: $V_1 = V_3 y_3 / V_1$, por tanto

$$\frac{h_{r}}{y_{3}} = \frac{y_{1}}{y_{3}} + \frac{1}{2} \left[F_{r_{3}}^{2} \left(\frac{y_{3}}{y_{1}} \right)^{2} - F_{r_{3}}^{2} \right] - 1$$

Finalmente, se tiene que

$$\frac{h_{r}}{y_{3}} = \frac{y_{1}}{y_{3}} - \frac{1}{2} F_{r_{3}}^{2} \frac{(y_{1}/y_{3})^{2} - 1}{(y_{1}/y_{3})^{2}} - 1$$
 (6.79)

en la que y_1/y_3 se obtiene de la Ec. (6.78)

Considerando que la pérdida de energía se puede calcular con la ecuación general: $h_r = K \ V_3^2/2g$, de la Ec. (6.79) se tiene que el coeficiente K vale

$$K = 2 \left(\frac{y_1/y_3 - 1}{Fr_3^2} \right) - \frac{(y_1/y_3)^2 - 1}{(y_1/y_3)^2}$$
 (6.80)

Los resultados de las Ecs. (6.77) a (6.80) son válidos en el caso de velocidades normales.

D.L. Yarnell (Ref. 49), en 1934, publicó los resultados de un estudio exhaustivo de fórmulas existen—tes y de un gran número de pruebas experimentales sobre diferentes clases de pilas comúnmente usadas en la práctica americana. El obtuvo experimentalmente los coeficientes de la tabla 6.7 para ser utilizados en las ecuaciones de d'Aubuisson y Nagler, en el caso de velocidades ordinarias.

Yarnell obtuvo la siguiente ecuación experimental en el caso de flujo subcrítico (tipos I y II) (Ref.

13).

$$\frac{\Delta y}{y_3} = K_y Fr_3^2 (K_y + 5Fr_3^2 - 0.6) (\alpha + 15\alpha^4)$$
 (6.81)

Donde Ky caracteriza la forma de la pila de acuer do con la tabla 6.7 y α =1- σ representa la relación espesor de pilas a ancho del canal. Los experimentos fue—ron realizados para α igual a 11.7, 23.3, 35 y 50 por—ciento que representan contracciones mucho más severas que las usuales (5 a 6 porciento); sin embargo, es factible interpolar entre estos valores aun para α <0.117.

La Ec. (6.81) tiene la ventaja de utilizar como variables independientes a las características en la sección 3, que son inicialmente conocidas.

Para flujos de velocidad pequeña, las formas 2 y 6 en la tabla 6.7 son hidráulicamente más eficientes que las restantes, siendo la forma 1 la menos eficiente. Los coeficientes fueron obtenidos para pilas de longi—tud igual a cuatro veces el espesor. Pruebas posteriores en pilas de relación longitud/espesor de 7 y 13 permitieron concluir que Δy disminuye de 83 a 96 porciento los valores obtenidos de la Ec. (6.81) y la tabla 6.7, quedando la relación óptima comprendida entre 4 y 7.

En los experimentos de Yarnell las pilas fueron colocadas paralelas a la corriente, no encontrando diferencias importantes hasta con ángulos de incidencia de 10°. Cuando llega a ser de 20° o más, Δ y aumenta considerablemen te dependiendo del gasto, tirante y grado de contracción del canal, disminuyendo KN y KA en 7 porciento. Por esta razón, es necesario evitar esviajamientos grandes.

La Fig. 6.55 proporciona una solución gráfica para el flujo supercrítico (tipo III). En este caso, con el valor de $^{\sigma}$ obtenido de la geometría del canal, de las Ecs. (6.72) ó (6.73) se determina F_{r_3L} y de aquí a la relación F_{r_3}/F_{r_3L} . Entrando a la gráfica, se obtiene $\Delta y/y_3$ para la forma dada a la pila. En este caso, Δy se interpreta como una sobrelevación local en la proximidad aguas arriba de la pila, ya que este tipo de flujo no produce propiamente un remanso que se transmita hacia aguas arriba de la obstrucción, si no se incluyen las pérdidas (Fig. 6.51 d).

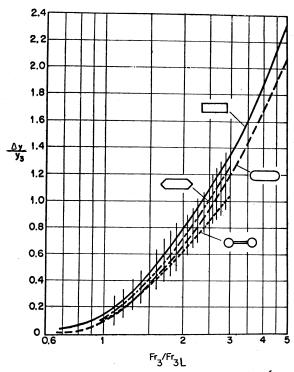


Fig. 6.55. Sobrelevación aguas arriba de las pilas en caso de régimen supercrítico (tipo III.)

Böss, en 1950, planteó una solución analítica para el flujo tipo III basándose en el principio de mínima energía y tirante crítico en la sección 2, cuando ocurren contracciones importantes en el área de la sección. La energía específica mínima en la sección 2 es mayor que en la 3; esto es, Emín > E3. Esto significa que es necesario que la energía específica mínima en la sección 2 sea mayor que la original en la sección 3 para que fluya el gasto Q. Así mismo se tiene

$$E_1 = Emin + h_r$$

donde h_r es la pérdida de energía entre la sección 1 y la sección 2 donde se produce el cambio de régimen. Esta pérdida resulta de la aparición de zonas de separación en los cantos de las pilas y se calcula con la ecuación general $h_r = K \, V_C^2/2g$; donde $V_C^2/2g = y_C/2 = Emín/3$, de manera que

$$h_r = \frac{1}{3} K Emin$$

Por tanto, resulta

$$E_1 = y_1 + \frac{V_1^2}{2g} = (1 + \frac{1}{3}) \text{ Emin}$$

0 bien, con Emín =
$$\frac{3}{2}$$
 y_C = $\frac{3}{2}$ $\sqrt[3]{Q^2/g}$ b₂²

$$y_1 + \frac{Q^2}{2g b_1^2 y_1^2} - \frac{3}{2} (1 + \frac{1}{3} K) \sqrt[3]{Q^2/g b_2^2} = 0$$

Resulta entonces la ecuación cúbica que sigue

$$y_1^3 - \frac{3}{2}(1 + \frac{1}{3}K)$$
 $\sqrt[3]{Q^2/g}$ b_2^2 $y_1^2 + \frac{Q^2}{2g}$ = 0 (6.82)

Esta ecuación permite calcular el tirante y y con éste, el valor de la sobrelevación Δy .

Ejemplo 6.11. En un canal de forma rectangular y an—cho de 120 m se construyen cuatro pilas con nariz y co la de forma semicircular, 3 m de espesor y 12 m de lon gitud. Para un gasto de 1275 $\rm m^3/s$ el tirante medio en la sección aguas abajo del puente es de 5.9 m. Determinar el remanso ocasionado por el puente, considerando que no hay esviajamiento respecto de la corriente y diferentes métodos en el cálculo.

Solución. La relación de contracción es

$$\sigma = \frac{120 - 4 \times 3}{120} = 0.90$$

Por otra parte, la velocidad y el número de Froude en la sección aguas abajo del puente es:

$$V_3 = \frac{1275}{120 \times 5.9} = 1.8008 \text{ m/s}; \frac{V_3^2}{2g} = 0.1653 \text{ m}$$

$$F_{r_3} = \frac{1.8008}{\sqrt{9.8 \times 5.9}} = 0.2368 \text{ (subcritico)}$$

La Ec. (6.73) resulta:

$$0.9 = \frac{(2 + 1/0.9)^3 Fr_3^4L}{(2 Fr_3^2L + 1)^3}$$

Esta ecuación se satisface para $F_{r_3L} = 0.678 > F_{r_3}$, lo cual puede verificarse con la Fig. 6.52. Esto implica que el flujo entre pilas es subcrítico; esto es, del ti po I. La Ec. (6.69) y la Fig. 6.52 conducen a un resultado similar.

De la tabla 6.7, Ky = 0.9 y por tanto, con $\alpha = 0.1$, de la Ec. (6.81) resulta que:

 $\Delta y = 0.9 \times 0.2368^2 \times 5.9 (0.9 + 5 \times 0.2368^2 - 0.6) (0.1 + 15 \times 0.1^4)$

$$\Delta y = 0.0175 \text{ m}$$

Para utilizar la Ec. (6.77), de la Fig. 6.54 $^{\delta}$ = 2.10. Además se tendría: $a_2/A_3 \approx \alpha = 1 - \sigma = 0.1$, por lo tanto:

$$\Delta y = 0.1 (2.1 - 0.1 \times 1.1) (0.4 + 0.1 + 9 \times 0.1^3) (1 + 2\frac{0.1653}{5.9}) 0.1653$$

$$\Delta y = 0.0177 \text{ m}$$

Esto es, prácticamente el mismo resultado que con la ecuación de Yarnell.

Utilizando $K_N = 0.94$ de la tabla 6.7, de la Ec. (6.76) (Nagler), con $\theta = 0.3$, se tiene que:

$$1275 = 0.94 \times 108 \sqrt{2g} (5.9 - 0.3 \times \frac{1.8008^{2}}{2g}) \sqrt{\Delta y + 1.3 \times \frac{1.8008^{2}}{2g}}$$

$$\Delta y = 0.02 \text{ m}$$

Utilizando el resultado de Yarnell, resulta que:

 $y_1 = 5.9 + 0.0175 = 5.9175 \text{ m y, por tanto } y_1/y_3 = 1.00297 \text{ y de la Ec. (6.79) la pérdida de energía es:}$

$$\frac{h_r}{y_3} = 1.00297 - \frac{1}{2} \times 0.2368^2 \frac{(1.00297)^2 - 1}{(1.00297)^2} - 1$$

$$h_r = 0.003132 \times 5.9 = 0.0185 m$$

Ejemplo 6.12. Un canal trapezoidal de 8.00 m de ancho de plantilla, taludes 1:1, conduce agua con un tirante de 2 m y velocidad de 0.75 m/s. Para cruzar el canal se construirá un puente apoyado en pilas, con las dimensiones indicadas en la Fig. 6.56, con nariz y cola de aristas agudas a 90°. Determinar la magnitud del re

manso introducido por el puente.

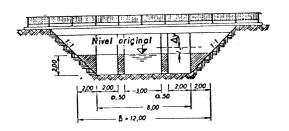


Fig. 6.56 Geometría del puente en el ejemplo 6.12

Solución. el área hidráu lica, ancho de superficie y tirante hidráulico en el canal respectiva—mente son:

$$A_3 = (8 + 1 \times 2) 2 = 20 \text{ m}^2$$

$$B_3 = 8 + 2 \times 1 \times 2 = 12 \text{ m}$$

$$Y_3 = 20/12 = 1.6667 \text{ m}$$

y el número de Froude

$$F_{r} = \frac{0.75}{\sqrt{9.81 \times 20/12}} = 0.1855 <<1$$

Por tanto, es de esperar un régimen subcrítico entre las pilas. La carga de velocidad es:

$$\frac{V_3^2}{2g} = 0.0287 \text{ m}$$

El área ocupada por pilas y estribos es:

$$a_2 = 2 \times 0.5 \times 2.00 + 2 \times \frac{2.00 \times 2.00}{2} = 6.00 \text{ m}^2$$

De la Fig. 6.54; $\delta = 3.9$; de la Ec. (6.77) se tiene:

$$\Delta y = \frac{6}{20} (3.9 - \frac{6}{20} \times 2.9) \left[0.4 + \frac{6}{20} + 9 \left(\frac{6}{20} \right)^3 \right] (1 + 2 \frac{0.0287}{1.6667}) 0.0287$$

$$\Delta y = 0.025 \text{ m}$$

6.6.4 Hilera de Pilas Cilíndricas

Yarnell encontró que la fórmula de Nagler (Ec. 6.76) se puede aplicar al caso de flujo subcrítico a través de hileras de pilas cilindrícas y la de d'Aubuisson (Ec. 6.72) al caso de flujo supercrítico. Para ello se recomiendan los coeficientes de la tabla 6.8.

Tabla 6.8 Coeficientes K_N y K_A en las Ecs. (6.76) y (6.75) para el flujo a través de hileras de pilas cilíndricas (Ref. 49)

Tipo de hilera	κ_{N}	KA
Hilera de 5 pilas para una vía:		
Paralela a la corriente	0.90	0.96
Con un esviajamiento de 10°	0.90	
Con un esviajamiento de 20°	0.89	
Con un esviajamiento de 30°	0.87	
Hilera de 10 pilas para doble vía	0.82	0.88
Dos hileras de 5 pilas para una vía	0.79	0.86

En este caso, la contracción del canal se calcula como el diámetro promedio de las pilas más el espesor del contraventeo de rigidización, independientemente del ángulo para el cual la hilera de pilas se coloca contra la corriente.

6.6.5 Rejillas

El cálculo del remanso, ocasionado aguas arriba de rejillas superficiales para el control de basura, depende de la pérdida ocasionada por la obstrucción. El procedimiento de cálculo de esta pérdida ha sido presentado en el inciso 8.7.3 del Vol. I de este libro, que contempla los casos más usuales.

La sobrelevación Δy , se obtiene de la aplica—ción de la ecuación de energía entre las secciones aguas arriba y aguas abajo de la obstrucción, con dicha pérdida.

6.7 Bifurcaciones

6.7.1 Aspectos generales

La unión o separación de flujo en canales es más complicada que en conductos a presión, ya que involucra numerosas variables, tales como: número de canales que se unen o separan, ángulos de unión o separa—ción, formas de la sección transversal, pendientes de plantilla, direcciones y magnitud de los gastos, redon deo en el muro de unión o separación, etc. A esto debe agregarse la posibilidad de régimen subcrítico y su percrítico o de un cambio de régimen.

El problema es tan complicado que sólo algunos casos simples y específicos han sido estudiados y, por lo mismo, sus resultados difícilmente pueden generalizarse. Así mismo, las aproximaciones teóricas del problema adolecen de muchos defectos y, por tanto, es más recomendable un estudio en modelo hidráulico para cada caso particular, cuando se desea mayor seguridad y precisión en los resultados.

6.7.2 Comportamiento general

6.7.2.1 Separaciones en régimen subcrítico

El comportamiento del perfil de flujo depende de las condiciones impuestas en los canales secundarios, esto es, de las condiciones aguas abajo. Por ejemplo, si la separación es desde un canal principal hacia dos se cundarios, entonces el cálculo del pérfil del agua es posible en dirección contraria al escurrimiento y hacia el punto de separación. El gasto en el canal principal se distribuye hacia los secundarios, atendiendo a la condición de igual altura de la línea de energía para ambos en el sitio de la separación, considerando también las pérdidas resultantes. Estas difieren considerablemente, según la forma de la separación, la dirección de los escurrimientos y el ángulo de la bifurcación.

Cuando el nivel de la línea de energía de los canales secundarios, queda por arriba del nivel de energía mínima del canal principal en el sitio de separación, el cálculo se puede efectuar sin mayor problema (Fig. 6.57). Por el contrario, si queda por abajo la línea de energía en el canal principal se eleva a fin de formar el tirante crítico en el punto de separa

ción (Fig. 6.58), forzando a un cambio de régimen. Es to puede ocurrir cuando el canal principal tiene un an cho menor que la suma de los anchos en los canales secundarios. La distribución de los gastos resulta nuevamente de la condición de igualdad del nivel de energía, cuando el salto hidráulico termina antes del inicio del canal principal. Si el salto hidráulico no ha terminado al inicio del canal principal, el cálculo de la distribución de gastos es complicado. en este caso es muy importante la ubicación de los canales secundarios respecto del principal, ya que las pérdidas de energía alcanzan valores importantes debido a las gran des velocidades e influyen notablemente en la distrib \overline{u} ción de los gastos. En los canales secundarios se fo \overline{r} ma el salto hidráulico después de la transición de sub crítico a supercrítico y en este caso es preferible $o\overline{b}$ tener resultados de un modelo hidráulico, por la comple jidad de los fenómenos.

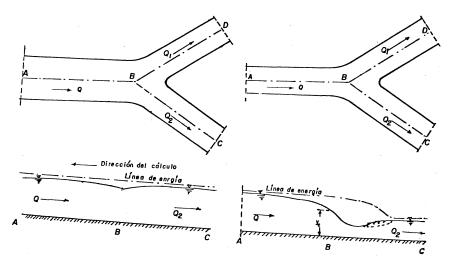


Fig. 6.57 Perfil de flujo en una sepa ración a régimen subcrítico, sin cambio de régimen.

Fig. 6.58 Perfil de flujo en una sepa ración a régimen subcrítico, con cambio de régimen.

6.7.2.2 Separaciones en régimen supercrítico

En estos casos, el comportamiento del flujo queda determinado desde aguas arriba, es decir desde el canal principal. Los gastos se dividen de acuerdo con la igualdad de energía (incluyendo pérdidas) en el punto de separación. Para la bifurcación es válido lo indicado para el régimen subcrítico. El escurrimiento se mantiene supercrítico, mientras la línea de energía no quede por debajo de Emín en el sitio de separación (Fig. 6.59). Sin embargo, si éste fuera el caso, cuando aproximadamente la suma de los anchos de los canales secundarios fuera menor que el ancho del principal, se formaría un salto hidráulico en el canal principal, y con ello un régimen subcrítico. El tirante crítico se formaría en las secciones al inicio de los canales secundarios. Después de dicho salto, el régimen cambia ría nuevamente de subcrítico a supercrítico en dichos canales secundarios, tratando de alcanzar el tirante normal en ellos (Fig. 6.60).

Este tipo de separaciones difícilmente se presenta en la práctica.

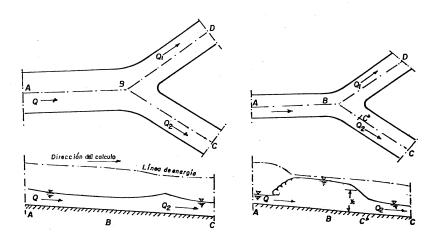


Fig. 6.59 Perfil de flujo en una separación a régimen subcrítico, sin cambio de régimen.

Fig. 6.60 Perfil de flujo en una separación a régimen subcrítico, con cambio de régimen.

6.7.2.3 Uniones en régimen subcrítico

El comportamiento es similar al de caso de separaciones. El cálculo en dirección contraria a la del flujo permite llegar al punto de unión, manejando la zo na de transición de manera similar al de separación y satisfaciendo la condición de igual altura de energía (incluídas las pérdidas) al principio del tramo del canal principal. Con esta condición y el conocimiento de los gastos que se unen, se puede determinar el perfil de flujo en los canales secundarios. Si la altura de energía mínima en los canales secundarios queda por debajo de la línea de energía del principal (calculada co mo antes se indicó), no hay cambio de régimen, siendo posible el cálculo sin mayores problemas. Por el contrario, si la altura de energía mínima de uno o más de los canales secundarios quedara por arriba de la línea de energía del principal, en el caso ideal se formaría en las secciones finales de los secundarios el tirante crítico.

La transición de subcrítico a supercrítico sería a través de un salto hidráulico (Fig. 6.61), con un comportamiento del flujo muy complicado. Esto ocurriría cuando la suma de los anchos de los canales secunda—rios fuera menor que el del principal.

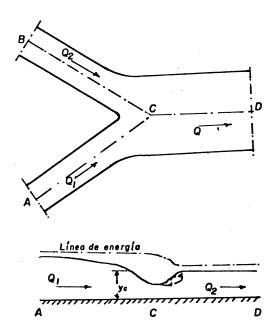


Fig. 6.61 Perfil de flujo en una unión a régimen subcrítico, con cambio de régimen

6.7.2.4 Uniones en régimen supercrítico

El cálculo en la dirección del flujo permite llegar al sitio de la unión. Para la zona de transición se puede aplicar la ecuación de impulso y cantidad de movimiento. En el canal principal se determina el perfil de flujo a partir de la altura de la línea de energía y los gastos conocidos. Cuando del cálculo en los canales secundarios se obtiene una altura de energía menor que la mínima para el principal, hacia aguas arriba de los canales secundarios se forma una transición, al cambiar de régimen supercrítico a subcrítico mediante un salto hidráulico. Al principio del canal principal toma lugar nuevamente la transición de régimen subcrítico a supercrítico.

El comportamiento del flujo en el caso de unión de canales a régimen supercrítico es extremadamente complicado y por ello es necesario estudiarlo en modelos hidráulicos. Por otra parte, tiene poco interés, ya que es muy difícil que éste ocurra en la práctica.

6.7.3 Pérdidas de energía

Existen muy pocas publicaciones referentes a la determinación de la pérdida de energía en bifurca ciones. Mock (Ref. 52), realizó experimentos en separaciones de canales rectangulares a régimen subcrítico, como la mostrada en la Fig. 6.62.

De la ecuación de la energía, las pérdidas correspondientes a cada canal secundario son:

$$h_{C_1} = E - E_1 = \frac{V^2 - V_1^2}{2g} + (y - y_1)$$

$$h_{C2} = E - E_2 = \frac{V^2 - V_1^2}{2g} + (y - y_2)$$

en las que quedan excluídas las pérdidas por fricción y también en los resultados experimentales de Mock.

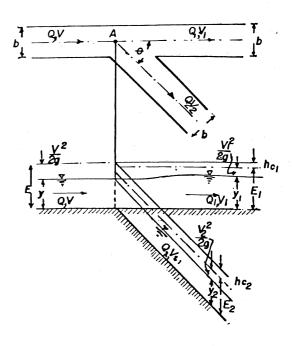


Fig. 6.62 Geometría de la separación estudiada por Mock (Ref. 52)

Las pérdidas se pueden escribir en su expresión gene—ral:

$$h_{C1} = K_1 \frac{V^2}{2g}$$
; $h_{C2} = K_2 \frac{V^2}{2g}$

donde V representa la velocidad en el canal antes de la bifurcación.

La Fig. 6.63 presenta los resultados de K, obte nidos experimentalmente por Mock, para régimen subcrítico en todos los canales y tienen una precisión de + 0.05. En ellos no se encontró ninguna influencia de los números de Reynolds y Froude.

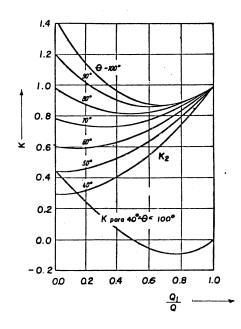


Fig. 6.63 Pérdidas de energía en la bifurcación de la Fig. 6.62 (Ref. 52)

El caso específico de la separación mostrada en la Fig. 6.62 fue también estudiado experimentalmente por Taylor (Ref. 53).

Para cualquier valor de $\boldsymbol{\theta}$, es posible correla cionar los parámetros adimensionales Q_2/Q , y/y_2 , y_1/y_2 y $k_3 = V^2/2g$ y, de acuerdo con los resultados experi mentales. Para $\theta = 90^{\circ}$, las curvas de correlación se muestran en las Figs. 6.64 y 6.65, las cuales se pue den utilizar para determinar la repartición de un gasto Q conocido, hacia los canales secundarios. Para ello se supone primero Q₁ y de aquí se obtiene $Q_2 = Q - Q_1$. Los tirantes correspondientes y_1 y y_2 se pueden determinar de las curvas Q - y obtenidas de las características geométricas e hidráulicas de los canales 1 y 2. Para y_1/y_2 , el parámetro y $/y_1$ se puede de terminar de la Fig. 6.64 para cada valor de Q₁ supuesto y de esta manera se puede graficar el parámetro Q₂/Q contra y/y₂ como la curva A mostrada en la Fig. 6.65. La intersección de esta curva con las curvas k3

proporciona las posibles combinaciones de las varia—bles entre las cuales, un valor de k_3 correspondería al gasto total Q del canal principal y de aquí, a valores de y/y_2 y Q_2/Q .

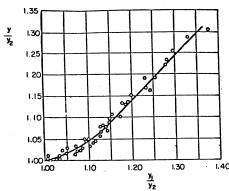


Fig. 6.64 Correlación entre tirantes de una separación para $\theta = 90^{\circ}$ - (ref. 53).

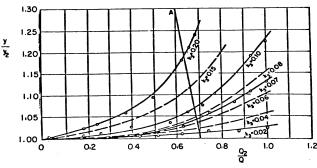


Fig. 6.65 Correlación de características hidráulicas en una separación para $\theta = 90^{\circ}$ (ref. 53)

De la curva Q - y del canal 2, se puede determinar el tirante y_2 para el gasto Q_2 así obtenido, ade más del tirante y a partir del parámetro y/y_2 . Des—

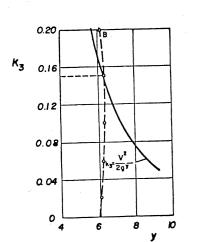


Fig. 6.66 Parametro k₃ en función de y - (ref. 53)

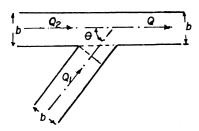


Fig. 6.67 Unión de canales estudiada por — Taylor (ref. 53)

pués se puede graficar ks contra y, tal como la curva B mostrada en la Fig. 6.66. El va lor de k₃ debe satisfa cer, no solo la curva B. sino también la cur va de trazo contínuo que relaciona k, contra y. La intersección de las dos curvas propor ciona los valores reque ridos de k₃ y y. Con este k₃. el valor co-rrespondiente a Q_2/Q se puede determinar de la Fig. 6.65 y también la repartición de los gastos Q_1 v Q_2 .

Taylor también investigó la unión de canales en régimen subcrítico y específicamente el caso mostrado en la Fig.6.68, con canales horizonta les, todos con el mismo ancho.

Para efectuar un estudio teórico de la unión, con la geometría mostra da en la Fig. 6.68, Tay lor consideró que la ve locidad se distribuye uniformemente en los ca nales antes y después de la unión, que la fuerza de fricción es despreciable en compara ción con otras fuerzas y que los tirantes en los canales 1 y 2 son iquales. Por la aplica ción de la ley de impul so y cantidad de movimiento a la unión, para la componente en la dirección del canal 1 al principal, Taylor obtuvo la siguiente ecuación:

$$k_2 = \frac{n_q^2 (n_{y-1}^2)}{4 n_y^2 \left[2 n_q - n_q^2 (1 + \cos \theta) + n_y - 1\right]}$$
 (6.83)

donde $k_2 = V_2^2/2g$ y_2 , $n_q = Q_2/Q$, $n_y = y_a/y_b$, V_2 es la velocidad en el canal 2, y_2 el tirante en el canal 2, y_a el tirante antes de la unión, y_b después de la unión y_b el ángulo entre los canales secundarios. Tomando a n_q como un parámetro, k_2 se puede graficar contra n_y para cada valor de θ .

La Ec. (6.83) fue verificada experimentalmente para uniones donde θ = 45° y 135° y se encontró buena concordancia para θ = 45°, pero no para θ = 135°. Esto probablemente se debió a la distorsión en la distribución de velocidades después de la unión y a que el flujo no permanecía paralelo a las paredes del canal.

El problema de diseño de partidores, que tiene mucha utilidad en sistemas de riego, puede consultarse en la Ref. 24.

Ejemplo 6.13. Un canal rectangular de 6 m de ancho de plantilla y 2.21 m de tirante normal, recubierto de concreto (n = 0.015 Manning) y de pendiente S_0 = 0.0004, se bifurca con la geometría de la Fig. 6.57 hacia dos canales también rectangulares y recubiertos de concreto de pendiente S_1 = 0.002 y S_2 = 0.001, en los que se desea la sección hidráulica más eficiente. El ángulo de la bifurcación es θ = 45°. La longitud de los canales secundarios es suficientemente grande para aceptar el establecimiento de flujo uniforme en ellos. a) Calcular las dimensiones de la sección en los canales secundarios, así como el gasto en los mismos. b) El perfil del flujo resultante en el canal princi—pal.

Solución a. Para el canal principal, las propiedades geométricas de la sección en flujo uniforme, son: $A = 13.26 \text{ m}^2$, P = 10.42 m, $R_h = 1.2726 \text{ m}$; siendo la

velocidad y el gasto:

$$V = \frac{1}{0.015} \times 1.2726^{2/3} \times 0.0004^{1/2} = 1.5658 \text{ m/s}$$

$$Q = 13.26 \times 1.5658 = 20.7619 \text{ m}^3/\text{s}$$

Por otra parte, para la sección hidráulica más eficiente, se tiene que:

$$b = 2y$$
; $R_h = b/4$

Para los canales secundarios se debe satisfacer la ecuación de Manning:

$$Q_1 = \frac{A_1}{n} R_{1}^{2/3} S_1^{1/2} = \frac{b_1^2}{2 \times 0.015} (\frac{b_1}{4})^{2/3} (0.002)^{1/2}$$

$$Q_1 = 0.5916 \, b_1^{8/3} \tag{a}$$

v también:

b₂ (m) 4.32 4.28 4.18 4.01

$$Q_2 = 0.4183 \ b_2^{8/3}$$
 (b)

Es necesario que se cumpla que: $Q_1 + Q_2 = 20.7619$, obien:

0.5916
$$b_1^{8/3} + 0.4183 b_2^{8/3} = 20.7619$$
 (c)

La tabulación de esta ecuación está en la tabla 6.9.

3.73

3.25

Tabla 6.9 Valores obtenidos de la Ec. (c) en el ejemplo 6.13 caso a.

La energía en el punto A, para el canal 1, es:

$$EA_1 = y_1 + \frac{V_1^2}{2g} + K_1 + \frac{V^2}{2g} = \frac{b_1}{2} + \frac{2 Q_1^2}{g b_1^4} + K_1 + \frac{V^2}{2g}$$

donde se sustituye la Ec. (a) y el valor de V, resultando que:

$$E_{A_1} = 0.5 b_1 + 0.07135 b_1 + 0.12495 K_1$$
 (d)

De la misma manera, para el canal 2 se tiene que:

$$E_{A_2} = 0.5 b_2 + 0.03567 b_2^{4/3} + 0.12495 K_2$$
 (e)

 K_1 y K_2 son los coeficientes de pérdida de la Fig. 6.63 y ambos dependen de Q_1/Q_*

Para los valores correctos de b_1 y b_2 , los valores de E_{A_1} y E_{A_2} deben ser iguales si se elige la Ec. (d) o la (e).

En la tabla 6.10 se presentan algunos valores de tabulación en las Ecs. (d) y (e). En ellos, los valores de Q_1 y Q_2 se han obtenido de las Ecs. (a) y (b).

abla 6.10 Valores obtenidos de las Ecs. (d) y (e) en el ejemplo 6.13 caso a.

La Fig. 6.68 muestra las curvas para la representación gráfica de las Ecs. (c), (d) y (e). La primera relaciona b_1 con b_2 , la segunda b_1 con E_{A_2} y la tercera b_2 con E_{A_2} . La intersección de la curva $E_{A_1} = E_{A_2}$ con la curva de la Ec. (c) proporciona la solución buscada que es: $b_1 = 3.08$ m, $b_2 = 3.13$ m.

Para estos anchos, los gastos Q_1 y Q_2 resultan de las Ecs. (a) y (b) como sigue:

$$Q_1 = 0.5916 (3.08)^{8/3} = 11.8804$$
 $Q_2 = 0.4183 (3.14)^{8/3} = 8.8437$
 $20.7241 \approx Q$

De la gráfica se obtiene que: E_A = 1.82 m

Solución b. Se puede demostrar que el flujo en todos los canales es subcrítico. También se observa que $E_A < y$, por lo cual, aguas arriba del canal principal, se genera un perfil del tipo M_2 y que no hay peligro de desbordamiento, ya que los tirantes serán menores que el normal, pero mayores que el crítico.

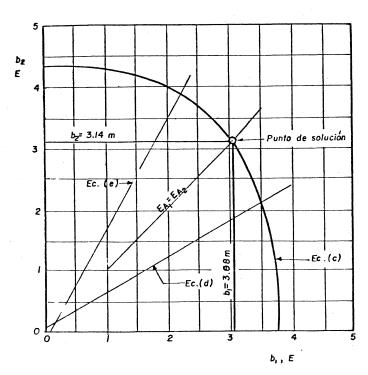


Fig. 6.68 Solución gráfica de las Ecs. (c), (d) y (e) en el ejemplo 6.13

7. FLUIO ESPACIALMENTE VARIADO

Aspectos generales

En los distintos tipos de flujo hasta ahora estudiados se ha considerado que el gasto permanece constante enla dirección del movimiento. Sin embargo, se presenta en la práctica otro tipo de flujo en que el gasto delcanal aumenta o disminuye en la dirección del escurrimiento, por la entrada o salida de un gasto de aportación o de desviación.

El flujo espacialmente variado es el resultado del aumento o reducción del gasto en la dirección del flujo, en el que se producen modificaciones de la cantidad de movimiento y del contenido de energía, con un comportamiento más complicado que el de gasto constante.

En el flujo espacialmente variado de gasto creciente el agua añadida a la que originalmente escurre en el - canal, produce fuertes corrientes transversales, un mez clado turbulento y un flujo de forma espiral. Estos - efectos se transmiten hacia aguas abajo, normalmente - más allá de la última sección en que se aporta gasto - al canal. La pérdida de energía inducida por estos fe nómenos se puede cuantificar por medio de la ecuación de impulso y cantidad de movimiento, que resulta más - conveniente que la de energía en el estudio de este tipo-

de flujo. En un primer intento de análisis, es posible ignorar los efectos de la inclinación transversal de - la superficie libre en el canal, la que resulta de los fenómenos antes indicados. También ocurre que el mez-clado turbulento del gasto aportado lateralmente, con-el que fluye en la dirección longitudinal del canal, produce una resistencia al flujo mayor que la normal.

El flujo con gasto creciente se presenta en el diseñode estructuras, como el vertedor de canal lateral, utilizado para eliminar las excedencias en un vaso de almacenamiento; también en cunetas, bordillos y canalesde drenaje en carreteras, aeropuertos y tierras agríco
las, en sistemas de aguas negras, en plantas de tratamiento y en sistemas de drenaje de áreas pavimentadasy cubiertas de techo.

En el flujo con gasto decreciente la desviación de cau dal hacia el exterior del canal no produce cambios enla energía del flujo, como se ha verificado teórica y-experimentalmente. Por esta razón, la ecuación de - - energía se ha encontrado más conveniente en el análi-sis de este problema y tiene utilidad en el diseño devertedores laterales para eliminar las excedencias enun canal de conducción, en los cauces de alivio, en la desviación de caudal mediante rejas, o bien en el de - drenes porosos para infiltrar aqua en el subsuelo.

Para obtener las ecuaciones de flujo espacialmente variado es necesario hacer una serie de hipótesis a finde simplificar el análisis. La mayoría de esas hipótesis no son limitativas, ya que es factible hacer la corrección necesaria cuando las condiciones del flujose aparten de la hipótesis aceptada. A continuación se indican dichas hipótesis.

- a) El flujo es unidimensional.
- b) La distribución de velocidades en la sección transversal del canal es constante y uniforme, de manera ra que los coeficientes de corrección son: $\alpha=\beta=1$.
- c) El flujo en la dirección del movimiento general man tiene líneas de corriente paralelas, o de curvatura despreciable, por lo que la distribución de presiones sigue la ley hidrostática.
- d) La pendiente del canal es relativamente pequeña, de manera que su efecto sobre la carga de presión no es importante.

e) El efecto del arrastre de aire es despreciable.

Debido a que los problemas y métodos de solución son - distintos en caso de gasto creciente o decreciente, se tratan ambos tipos de flujo por separado.

7.2 Flujo con gasto creciente

7.2.1 Ecuación dinámica

La fig. 7.1 muestra un canal en el cual entra un gasto constante, de velocidad u e inclinación δ respecto dela normal al eje del canal. Las secciones transversales 1 y 2 se encuentran separadas la distancia dx y se muestran las fuerzas que intervienen en el movimiento. El gasto dQ entra al canal en el tramo dx.

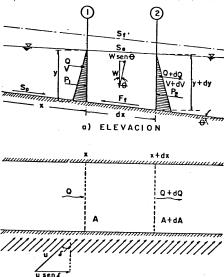


Fig. 7.1 Tramo de un canal con flujo espacialmente variado de gasto reciente.

b) PLANTA

La presión total para la sección 1 en la dirección del flujo vale:

$$P_1 = Y z_G A$$

donde $\mathbf{z}_{\mathbf{G}}$ es la profundidad del centro de gravedad de — la sección.

De manera similar, para la sección 2 se tiene que

$$P_2 = \gamma (z_G + dy) A + \frac{\gamma}{2} dA dy = \gamma (z_G + dy) A$$

donde dy es la diferencia entre los tirantes de las - dos secciones 1 y 2 y por simplificación se ha despreciado el término con diferenciales de orden superior.

La resultante de las dos fuerzas es

$$P_1 - P_2 = - Y A dy$$
 (7.1)

Siendo W el peso del prisma entre las secciones 1 y 2, su componente en la dirección del movimiento es

W sen
$$\theta = \gamma S_0 \left(A + \frac{dA}{2}\right) dx = \gamma S_0 A dx$$
 (7.2)

donde S = sen θ y se han despreciado diferenciales de-orden superior.

Si S_f es la pendiente de fricción y S_f dx la pérdida -corréspondiente, la fuerza de fricción sobre las paredes del tramo es igual a la presión debida a la cargade fricción perdida, multiplicada por el área media en tre 1 y 2. Se tiene así que:

$$F_{f} = \gamma S_{f} \quad (A + \frac{dA}{2}) dx = \gamma S_{f} A dx \qquad (7.3)$$

La cantidad de movimiento del flujo que atraviesa lasección 1 es: $\underline{\gamma}$ Q V, en la sección 2: $\underline{\gamma}$ (Q +dQ) (V +dV) y del gasto que entra lateralmente en gla dirección del eje del canal: $\underline{\gamma}$ dQ u sen δ .

La suma de las componentes de cantidad de movimiento — en la dirección del eje del canal, siguiendo la convención de utilizar signo positivo cuando sale del prisma

entre las secciones 1 y 2, y negativo, en caso contrario, resulta que es $\ \ \,$

$$\Sigma \frac{\gamma}{g} Q V = \frac{\gamma}{g} (Q + dQ) \quad (V + dV) - \frac{\gamma}{g} Q V - \frac{\gamma}{g} dQ u \operatorname{sen} \delta$$

$$= \frac{\gamma}{g} \left[Q dV + (V + dV - u \operatorname{sen} \delta) dQ \right]$$
(7.4)

La ecuación de impulso y cantidad de movimiento sería entonces

$$P_1 - P_2 + W \operatorname{sen} \theta - F_f = \sum \frac{\gamma}{q} Q V$$

Substituyendo aquí a las ecs. (7.1) a (7.4) y simplificando al peso específico γ , resulta que

- A dy +
$$(S_0 - S_f)$$
 A dx = $\frac{1}{g} \left[Q \, dV + (V + dV - u \, sen \, \delta) \, dQ \right]$ (7.5)

También se desprecia el producto dV dQ y se obtiene que

$$dy = -\frac{1}{g} \left[V \ d \ V + \frac{1}{A^2} \ (1 - \frac{u}{V} \ \text{sen } \delta) \ Q \ dQ \right] + (S_Q - S_f) dx \ (7.6)$$

Por otra parte, siendo también V + dV = (Q + dQ)/(A + dA), de -aquí al substituir dV en la ec. (7.6) y simplificar, resulta que

Despreciando a dA dQ y a dA en el denominador y considerando que ${\rm Fr}^2={\rm Q}^2/{\rm g}A^2$ y (número de Fraude) 2 , se obtiene que:

$$\frac{dy}{dx} = \frac{S_0 - S_f - \frac{2Q}{gA^2} \frac{dQ}{dx} (1\frac{1}{2} \frac{u}{V} sen \delta)}{1 - Fr^2}$$
(7.7)

En esta ecuación, dQ/dx representa al gasto que entraal canal por unidad de longitud y Y es el tirante hi dráulico. En el caso de que la distribución de veloci dades fuese uniforme, se puede introducir el coeficien te de energía a. como sigue:

$$\frac{dy}{dx} = \frac{{}^{5}o - {}^{5}f - \frac{2\alpha Q}{gA^{2}} \frac{dQ}{dx} (1 - \frac{1}{2} \frac{u}{V} sen \delta)}{{}^{1}a + {}^{2}b^{2}}$$
(7.8)

Esta es la ecuación dinámica del flujo espacialmente - variado con gasto creciente en el sentido del flujo. - En esta ecuación se ha usado α en lugar de β , debido a que la pendiente de fricción $S_{\rm F}$ se evalúa por una fórmula de pérdida de energía, comó la de Manning.

Cuendo el flujo ingresa en dirección perpendicular aleje del canal, entonces $\delta=\mbox{sen}\,\delta=\mbox{0 y la ec.}$ (7.8) se - simplifica como sigue:

$$\frac{dy}{dx} = \frac{s_0 - s_f - \frac{2\alpha Q}{gA^2} \frac{dQ}{dx}}{1 - Fr^2}$$
 (7.9)

Finalmente, si dQ/dx = 0, la ec. (7.9) se simplifica y se convierte en la ec. (5.5) que es la dinámica del -flujo gradualmente variado.

La ec. (7.9) puede también obtenerse a partir de la - ecuación de energía, si en los desarrollos para obte - ner a la ec. (7.20) para gasto decreciente, a la energía total expresada por la ec. (7.19) se suma la energía cinética producida por la adición del gasto do enel tramo de longitud dx y en el intervalo de tiempo dt. Esta energía por unidad de peso es

$$\frac{\text{masa x velocidad}^2}{\text{g x peso del volumen}} = \frac{(\text{ x dQ dt}) (\text{ a V}^2)}{g (\text{ x A dx})} = \alpha \frac{\text{V dQ}}{\text{gA}}$$

7.2.2 Análisis de los perfiles de flujo

El grado de dificultad para resolver las ecs. (7.8) o

(7.9) depende mucho del problema tratado y de sus condiciones particulares. En general, el gasto que ingre sa al canal es una función conocida - usualmente línealde x y esto simplifica el análisis. Las soluciones - analíticas existen sólo para casos muy simples. Hager (ref. 54) obtuvo soluciones para condiciones arbitra - rias aguas arriba y aguas abajo, así como los perfiles adimensionales de flujo con gasto creciente para canales prismáticos rectangulares de cualquier pendiente y para no prismáticos rectangulares casi horizontales.

La solución númerica es más recomendable y por ello — conviene aquí hacer más énfasis en ella. Fue con este tipo de solución que Li (ref. 55) realizó el análisisdel flujo espacialmente variado en canales cortos de — sección transversal grande y forma cualquiera, en los que la pérdida por fricción era despreciable. Sus resultados tienen utilidad en el análisis de los perfiles de flujo, encontrando que su clasificación depende dela relación entre el número de Froude ${\bf F_{r_*}}$ y el paráme—

tro G=S L/y, donde el subindice L identifica a los valores que corresponden a la sección del extremo final aguas abajo (x = L), en la cual debe existir un tirante controlado.

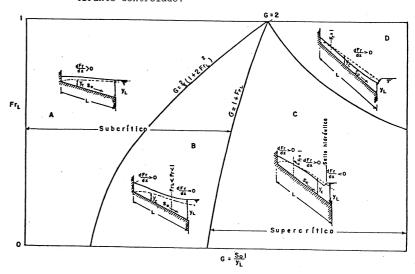


Fig. 7.2 Tipos de perfil de flujo espacialmente variado. en canales rectangulares, la línea que divide a las regiones B y C tiene por ecuación G = 1 + Fr_L y triangulares G = 2.

Para $S_0 > 0$ y grande, $S_f = 0$ y dQ/dx > 0, el numerador de la ec. (7.9) es siempre positivo. De esta manera, si $F_r < 1$ (subcritico), dy/dx > 0; si $F_r > 1$ (supercritico), dy/dx < 0.

El diagrama mostrado en la Fig. 7.2 presenta la clasificación de los perfiles de flujo considerando cuatroregiones, una para cada condición.

Región A. El régimen es subcrítico en todo el canal y F_r aumenta hacia aguas abajo, esto es dF_r/dx> 0. Es posible demostrar que cuando dF_r/dx> 0, G< $\frac{2}{3}$ (1 + 2Fr_L²) y esto queda representado por la línea que divide lasregiones A y B en el diagrama de la Fig. 7.2.

Región B. El régimen es subcrítico en todo el canal, pero Fr se incrementa al principio, hasta alcanzar un máximo menor que uno y después disminuye. La línea que divide las regiones B y C en canales rectangulares queda representada aproximadamente por G $\stackrel{\star}{=}$ 1 + Fr $_{\!\! L}$. Esta línea abarca todos los casos en que el valor máximo de Fr es uno. En otras palabras, el criterio para el ahogamiento de la sección crítica de un perfil controlado por el tirante de aguas abajo en un canal rectangular - es: G $\stackrel{\star}{<}$ 1 + Fr $_{\!\! L}$.

Si no se ahoga la sección crítica, su ubicación está - dada por la ec. (7.11).

Región C. El régimen es supercrítico en el tramo aguas abajo de la sección $F_r=1$, existiendo un salto hidráu lico en alguna sección intermedia. La ubicación de la sección crítica está dada por la ec. (7.11). El flujo es supercrítico cuando $G>1+Fr_1$ aproximadamente y el salto hidráulico ocurre sólo si el desfogue está suficientemente sumergido. El tirante de la sección final no afecta al perfil del flujo aguas arriba del salto, — si no más bien la posición de la sección crítica.

Región D. El régimen es supercrítico en todo el tramo aguas abajo de la sección Fr=1, cuando el tirante en el desfogue no es suficientemente grande para crear salto hidráulico. El valor de Fr_L no queda determinado por el tirante de sumergencia en el desfogue. La línea que divide a las regiones C y D representa la condición de tirante mínimo de sumergencia necesario para producir salto hidráulico en el extremo final del

canal y que es igual al tirante conjugado mayor coincidente con el nivel de sumergencia en la salida. Cuando el tirante de sumergencia es mayor que dicho mínimo, el salto hidráulico se desplaza hacia aguas arriba haciendo que la condición de flujo quede dentro de la región C.

La sección crítica que puede ocurrir en las regiones C y D en canales de gran pendiente puede determinarse me diante el criterio de Keulegan (ref. 56). Siguiendo - la discusión del subcapítulo 5.3, existe una sección - crítica (F = 1, o bien dy/dx = 0) cuando el numerador en la ec. (7.9) vale cero. Esto es, en el caso gene - ral de que q_{\star} = dQ/dx = Qc/xc pendiente de plantilla - constante y que la condición de estado crítico - - - (ec. 3.4 b) es: (Ac = ($Q_{\rm C}$ B_C/g) , se tiene que:

$$S_{o} - S_{f} = \frac{2 Q_{c}^{2}}{g A_{c}^{2} X_{c}} = \frac{2}{X_{c}} (g \frac{Q_{c}^{2}}{B_{c}^{2}})^{\frac{1}{3}}$$

Substituyendo nuevamente $Q_C = q_* \times_C y$ despejando \times_C resulta en -tonces que:

$$x_{c} = \frac{8 q_{*}^{2}}{g B_{c}^{2} (S_{o} - S_{f})^{3}}$$
 (7.10)

La ec. (7.10) permite calcular la distancia $x_{\rm C}$ a la que se en cuentra la sección crítica; sus características geométricas $A_{\rm C}$, - P_C y B_C dependen del gasto Q = $q_{\rm x}$ $x_{\rm C}$ en dicha sección (fig. 7.3) y de la pendiente de fricción $S_{\rm f}$ media entre las secciones - - - x = 0 y x = $x_{\rm C}$. Por estas razones, es necesario utilizar un procedimiento iterativo en el cálculo de $x_{\rm C}$.

En el caso del canal de sección rectangular, en la ec. (7.10) - B_C = b (ancho de plantilla) y siendo: $y_C = \sqrt[3]{2}/gb^2$ = $\sqrt[3]{4} \times 2 \times 2/gb^2$, al substituir x_C de la ec. (7.10), resulta que:

$$y_{c} = \frac{4 q_{\star}^{2}}{-g b^{2} (s_{o} - s_{f})^{2}}$$
 (7.11)

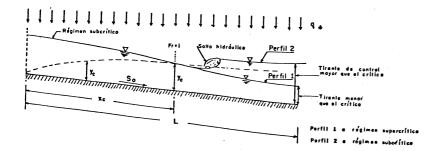


Fig. 7.3 Localización de la sección crítica en un canal colector con flujo espacialmente variado de gasto creciente

La sección crítica existe siempre que el valor de x no sea mayor que la longitud del canal colector. Si x > L, elflujo es subcrítico a lo.largo de todo el canal y puede estar sujeto a otro tipo de control en el extremo aguas abajo. Por el contrario , si se presenta una sección crítica, el flujo es subcrítico aguas arriba de la misma y supercrítico aguas abajo (perfíl 1 de la Fig. 7.3). Si además de la sección crítica, existe una de control en el extremo aguas abajo del canal que forza a un tirante suficientemente grande y a un salto hidráulico después de la sección crítica, éste puede inclusive moverse hacia aguas arriba, hasta la distancia calculada con la ec. (7.10) (perfil 2 de la Fig. - 7.3 y también la Fig. 5.31, como ilustración de un comportamiento similar).

La segunda alternativa para derivar la ec. (7.10) con sidera que F $_{\rm r}=1$ y dy/dx = 0. En teoría, esta posibilidad es perfectamente factible, sin embargo, los experimentos realizados por Beij (ref. 57), con canaletasde gran pendiente en el desagüe de grandes cubiertas de techo, indican que para satisfacer la ec. (7.10), dy/dx = 0, existe con ello una sección crítica en todos los casos, descartando así esta posibilidad.

Beij encontró también indicios de mayor resistencia al flujo que la normal, como resultado de la mezcla turbu lenta del aporte lateral con el flujo principal en el-colector. Beij experimentó con canaletas metálicas li

sas y encontró que el factor de fricción de Darcy f - (equivalente) no podía determinarse de la ley de Blasius (ec.2.10), si no de la siguiente:

$$f = \frac{1280}{Re} \tag{7.12}$$

donde el número de Reynolds $R_{\mbox{\scriptsize e}}$ se calcula con el radio hidráulico.

7.2.3 Integración directa para un canal rectangular, horizon tal y sin fricción. Un ejemplo de integración de la ec. (7.9) lo constituye el caso simple de un canal rectangular de ancho b, plantilla horizontal y pendientede fricción despreciable, en el que q* = dQ/dx es constante a lo largo del canal, e ingresa en dirección perpendicular a su eje. Existe también una sección de control aguas abajo para determinar el tirante que controla el flujo. El canal está cerrado en el extremo aguas arriba (x = 0) y tiene una longitud x = L sobrela cual se incrementa el flujo. El problema pertenece a la región A de la Fig. 7.2.

Siendo $q_* = Q_I/L$, donde Q_I es el gasto en la sección - final, el gasto en cualquier sección es $Q = q_* \times$. Ade más, el número de Froude en una sección x vale

más, el número de Froude en una sección x vale
$$Fr^2 = \frac{Q^2}{gb^2y^3} = \frac{q_*^2 \times q}{gb^2 y^3}$$
 (7.13)

por tanto, con <= 1, la ec. (7.9) se simplifica como - sique:

$$\frac{dy}{dx} = - \frac{2 q_{*}^{2} x}{g b^{\frac{2}{2}} y^{\frac{2}{2}} (\frac{1 - q_{*}^{2} x^{2}}{g b^{2} y^{3}})} = \frac{-2 x}{\frac{g b^{2} y^{2}}{q_{*}^{2}} - \frac{x^{2}}{y}}$$

o bien, se tiene que

$$\frac{dx^2}{dy^2} - \frac{x^2}{y^2} = -\frac{g b^2 y^2}{g^2}$$

Esta es una ecuación diferencial lineal de primer or - den; cuya solución es:

$$x^2 = -\frac{g b^2 y^3}{2 g^2} + c y$$

donde c es una constante de integración que puede serdeterminada a partir de la condición de frontera que para el extremo final del canal: x = L, $y = Y_L$, por tanto resulta que:

$$c = \frac{1}{y_L} \left[L^2 + \frac{g b^2 y_L^3}{2 q_*^2} \right]$$

siendo entonces la solución:

$$x^{2} = -\frac{g b^{2} y^{3}}{2 q_{*}^{2}} + (L^{2} + \frac{g b^{2} y_{L}^{3}}{2 q_{*}^{2}}) \underline{y}_{L}$$

o bien, como sigue:

$$\left(\frac{x}{L}\right)^{2} = \left(1 + \frac{1}{2 \operatorname{Fr}_{L}^{2}}\right) \frac{y}{y_{L}} - \frac{1}{2 \operatorname{Fr}_{L}^{2}} \left(\frac{y}{y_{L}}\right)^{3}$$
 (7.14)

donde y y Fr son los valores del tirante y número de Froude en el extremo final del canal (x = L). Si en dicho extremo se presenta el tirante crítico, entonces: Fr = 1 y de la ecuación anterior resulta que el tiran te en el extremo inicial a aguas arriba es: - - - - $\overline{}$ y $_{\rm O}$ = y $_{\rm L}\sqrt{3}$

La ec. (7.14) proporciona dos raíces reales positivas-pāra cada valor de x/L, sin embargo sólo los valores - de y/y_ $_{\rm L}$ > 1 son las soluciones correctas, ya que la - energía del flujo debe disminuir en la dirección de - aguas abajo y y no puede ser mayor que y_ $_{\rm L}$.

Un análisis similar al anterior se puede hacer para ca nales trapeciales sin pendiente; sin embargo, cuando S_0 \overline{y} S_f son importantes, no es posible obtener una ecuación — general explícita como la (7.14), a menos que se hagan hipótesis como la de Hinds (ref. 58) de imponer una — ley de velocidades a lo largo del canal, del tipo: — $V = a \ x^n$ (a y n varían con cada canal). Esta nunca ha sido corroborada y es difícil conocer con antelación —

los valores mas adecuados de a y n en cada caso. Poresta razón es preferible la solución numérica.

Ejemplo 7.1. Un canal colector rectangular, horizontal revestido de concreto, (n = 0.014) con 6 m de ancho y-30 m de longitud, tiene un ingreso lateral unitario y-constante de 3.25 m 3 /s, desde su extremo inicial cerra do. En el extremo final del canal el agua cae libre mente. a) Determinar los tirantes en los extremos y ala mitad del canal. b) Calcular el gasto de aporte lateral necesario para que el tirante en el extremo inicial sea de 6 m. c) Determinar la posición de la sección crítica en el canal, con las caracterísiticas del caso a, si la pendiente es $S_0 = 0.24$.

Solución a. El gasto total al final del canal colector es:

$$Q_{I} = 30 \times 3.25 = 97.5 \text{ m}^3/\text{s}$$

y en ese extremo final, el tirante es el crítico y vale:

$$y_L = y_C = \sqrt[3]{\frac{Q_L}{b^2q}} = \sqrt[3]{\frac{97.5^2}{6^2 \times 9.81}} = 2.9969 \text{ m}$$

y también $Fr_L = 1$. El parámetro G = 0 implica que elperfíl de flujo queda dentro de la región A de la Fig. 7.2 De la ec. (7.14), el tirante en el extremo aguasarriba del canal vale:

$$y_0 = y_L \sqrt{3} = 2.9969 \sqrt{3} = 5.1909 \text{ m}$$

Para la sección a la mitad, x/L = 0.5 y substituyendoen la ec. (7.14), se tiene que:

$$\left(\frac{y}{y_L}\right)^3 - 3\frac{y}{y_L} + 0.25 = 0$$

Esta ecuación se satisface para $y/y_L = 1.6888$, o sea - para un tirante y 5.0611 m, que es el valor buscado.

Solución b. Si $y_0 = 6$ m, de la ec. (7.14) el tiranteen el extremo aguas abajo es:

$$y_{L} = \frac{y_{0}}{\sqrt{3}} = \sqrt{\frac{6}{3}} = 3.4641 \text{ m}$$

y éste debe ser igual al crítico, por tanto el gasto - al final del colector es:

$$Q_L = b\sqrt{g y_C^3} = 6\sqrt{9.81 \times 3.4641^3} = 121.1634 \text{ m}^3/\text{s}$$

y el aporte lateral vale:

$$q_* = \frac{121.1634}{30} = 4.0388 \text{ m}^3/\text{s/m}$$

Solución c. La sección crítica queda determinada de -1a ec. (7.10) y debido a que el procedimiento es itera tivo, es necesario suponer un valor inicial de x_c , por ejemplo a la mitad del canal: x = 15 m. Por tanto, el gasto y el tirante crítico en esa sección son:

$$y_C = 3\sqrt{\frac{48.75^2}{6^2 \times 9.81}} = 1.888 \text{ m}; A_C = 11.328 \text{ m}^2; R_{h_C} = 1.1588 \text{ m}$$

Además:
$$S_{f_c} = \frac{(48.75 \times 0.014)^2}{11.328 \times 1.1588^{2}/3} = 0.002982$$

 $S_{f_c} = \frac{0 + 0.002982}{2} = 0.001491$

Considerando n = 0.014, de la ec. (7.10) resulta que:

$$x_c = \frac{8 \times 3.25^2}{9.81 \times 36 (0.24 - 0.001491)^3} = 17.63485 m$$

Este es el nuevo valor de tanteo. Después de reiterar el proceso varias veces, se concluye que x = 17.6421-m. En efecto: Q = 57.3368 m³/s, y = 2.1036 m, y - - s $_{\rm f}$ = 0.0030475; S $_{\rm f}$ = 0.0015238 y finalmente:

$$x_{c} = \frac{8 \times 3.25^{2}}{9.81 \times 36 (0.24-0.0015238)^{3}} = 17.6421 \text{ m}.$$

La ec. (7.11) verifica el resultado obtenido para y_c .

Debido a que en el extremo final del canal colector hay una caída libre, no existe tirante de control después — de la sección crítica antes calculada. Por tanto, el — perfil del flujo queda comprendido dentro de la región—D de la Fig. 7.2.

Ejemplo 7.2. Un lote pavimentado para estacionamiento- de vehículos es cuadrado de 60 m de lado y tiene pen- diente transversal en una sola dirección (S = 0.0025)- para descargar a un canal rectangular de 0.80 m de an-cho, paralelo al borde del lote, con la misma pendiente S = 0.0025 y terminando en una caída libre. Si la llu - vía cae sobre el terreno con una intensidad constante - de 7.2 cm/h, determinar: a) tirante máximo del agua sobre el pavimento; b) la profundidad mínima tolerable de la plantilla del canal por debajo de la superficie delterreno, considerando que el canal no debe desbordarse. Para los cálculos considerar que la pendiente es despreciable.

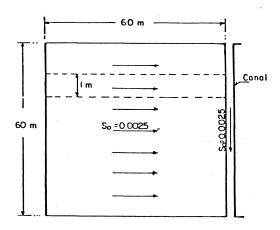


Fig. 7.4 Esquema del lote en el ejemplo 7.2

Solución a. El gasto que cae sobre una franja de ancho unitario del lote es:

$$q = \frac{0.072 \times 1 \times 1}{60 \times 60} = 0.00002 \text{ m}^3/\text{s/m}$$

Por tanto, el gasto que ingresa al canal por unidad de longitud es:

$$q_1 = 0.00002x60 = 0.0012 \text{ m}^3/\text{s}$$

El tirante crítico del flujo al caer al canal resulta:

$$y_{\rm C} = {}^{3}\sqrt{\frac{0.0012^{2}}{9.81}} = 0.0053 \text{ m}$$

De la ec. (7.14), el tirante máximo es en el lado contrario del lote y vale:

$$y_0 = 0.0053 \sqrt{3} = 0.0091 \text{ m}$$

Solución b. De la misma manera para el canal, el gasto al final del mismo vale:

$$Q_T = 0.0012 \times 60 = 0.072 \text{ m}^3/\text{s}$$

y el crítico es:

$$y_C = y_L = 3\sqrt{\frac{(0.072/0.6)^2}{9.81}} = 0.1136 \text{ m}$$

El tirante en el extremo aguas arriba resulta:

$$y_0 = 0.1136 \sqrt{3} = 0.1968 \text{ m}$$

que es la profundidad mínima tolerable para que no haya desbordamiento. Puede preveerse un libre bordo adicional para mayor seguridad.

.2.4 Método de integración numérica.

Este método puede aplicarse a cualquier problema práctico sin necesidad de hipótesis simplificatorias, admitiendo una generalización inmediata. Para esto es necesario considerar un tramo del canal de longitud Δx , limitado por las secciones 1 y 2, como lo indica la Fig. 7.5. La ec. (7.6) se integra en dicho tramo como sigue:

donde el subíndice m representa los valores medios enel tramo. El área media en el tramo es: $A_m = (Q_1 + Q_2)/(V_1 + V_2)$; al desarrollar la diferencia de cuadrados y simplificar, se tiene que (ref. 38):

$$\Delta y = -\frac{V_1 + V_2}{2g} \Delta V + (1 - \frac{u_{\text{m sen }} \delta}{V_{\text{m}}}) \left(\frac{V_1 + V_2}{Q_1 + Q_2} \right) \Delta Q + S_0 \Delta x$$

$$-\frac{S_{f_1} + S_{f_2}}{2} \Delta x \qquad (7.15 a)$$

donde: $\Delta V = V_2 - V_1 \; y \; \Delta Q = Q_2 - Q_1$. Esta ecuación, en término de los valores medios en el tramo, se escribetambién como sigue:

La diferencia de niveles de la superficie del agua entre las secciones 1 y 2 (Fig. 7.5), puede expresarse - como sigue:

o bien:

$$S_{O} \Delta x + y_{11} = y_{2} + \Delta y'$$
 (7.16 b)

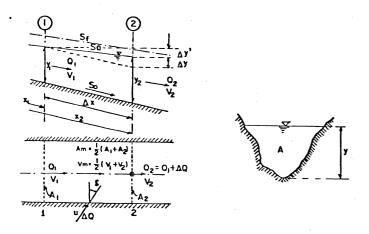


Fig. 7.5 Tramo de un canal con flujo espacialmente variado de gasto creciente.

Substituyendo la ec. (7.15 a) en la (7.16 a) e introdu ciendo el coeficiente de energía para corregir la no uniformidad de la distribución de velocidad (vea la -razón de usar α y no β , en el subcapítulo 7.2.1), re -sulta finalmente que:

$$\Delta y' = \frac{\alpha (V_1 + V_2)}{2g} \left[(V_2 - V_1) + (1 - \frac{u_m}{V_m} \operatorname{sen } \delta) \frac{(V_2 + V_1) (Q_2 - Q_1)}{Q_1 + Q_2} \right] + \frac{Sf_1 + Sf_2}{2} \Delta x$$
 (7.17)

En caso de no considerar la cantidad de movimiento del agua que entra, la ec. (7.17) se simplifica y resulta ser:

$$\Delta y' = \frac{\alpha (V_1 + V_2)}{2g} \left[(V_2 - V_1) + \frac{(V_1 + V_2) (Q_2 - Q_1)}{Q_1 + Q_2} \right] + \frac{Sf_1 + Sf_2}{2} \Delta x$$

Cuando se acepta en la ec. (7,15 b) que el gasto medio en el tramo es $Q_1=\frac{Q_1}{2}+\frac{Q_2}{2}$ y que la velocidad media es V_2 , por un desarrollo análogo se puede demostrar que la ec. (7.18) se transforma como sigue:

$$\Delta y' = \frac{\alpha \, C_1 \, (V_1 + V_2)}{g \, (Q_1 + Q_2)} \left[(V_2 - V_1) + \frac{V_2 \, (Q_2 - Q_1)}{Q_1} \right] + \frac{S_{f_1} + S_{f_2}}{2} \Delta x$$

expresión mas común en los libros que tratam del tema-(ref. 2). Los resultados obtenidos con las ecs. (7.18)y (7.19) difieren más en la medida que Δx aumenta.

Las ecs. (7.17) o (7.18) permiten calcular el perfil del flujo subcrítico o supercrítico utilizando tramosde longitud Δx . El primer término del segundo miembro representa el efecto de la pérdida por impacto y el segundo, el efecto de la pérdida por fricción.

Para utilizar el método es necesario iniciar desde una sección de control y establecer una dirección de cálculo con las mismas reglas que en el flujo gradualmente-variado en cuanto al régimen en que se desarrolla el -perfil del flujo. La solución sigue desde luego un -procedimiento interativo en el que, para un tramo Δ x,-se conocen Q1 y Q2. Al conocer el tirante en un extre mo del tramo, se tantea el tirante en el otro, de mane ra que el valor geométrico obtenido de la ec. (7.16 b) sea igual al calculado de la ec. (7.17) o de la (7.18).

En caso de que $\Delta Q = S_{fm} = 0$, o bien $Q_1 = Q_2$, la ec. - (7.17) ó (7.19) se simplifica a: $\Delta y' = \alpha (V_2^2 - V_1^2)/2g$, que es la ecuación de energía para flujo con gasto - - constante en el que se desprecia la fricción.

Ejemplo 7.3. Un canal trapecial tiene 2.50 m de ancho de plantilla, taludes 0.5: 1 y está revestido de con - creto en su totalidad, con n = 0.015. El canal se ini cia en la Est. 0+000, con la plantilla a la elevación = 10.00 m y es utilizado como colector de alivio de lasdescargas de un lago, con una aportación lateral de -

0.5 m³/s/m en los primeros 150 m; después continúa como canal de descarga manteniendo las dimensiones de la sección (Fig. 7.6). Analizar y calcular el perfil deflujo en el canal para los siguientes casos: a) pendiente constante S = 0.06 (altura Δz = 0); b) pendien te constante S = 0.06 y un escalón positivo de Δz = 1.60 m de altura en la Est. 0 + 150.00 m; c) pendiente constante So = 0.035 y escalón positivo de Δz = 0.30 m en la Est. 0 + 150.00 m; d) pendiente constante - -- So = 0.025 y escalón positivo de 0.30 m en la Est. - 0.+ 150.00 m.

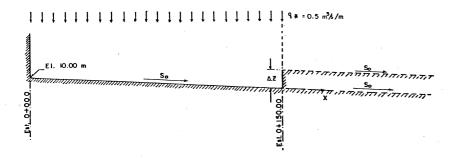


Fig. 7.6 Canal colector del ejemplo 7.3

Solución a. Es conveniente calcular la línea de tiran tes críticos a lo largo del canal. Para ello hay quesatisfacer la ecuación general del estado crítico en cada sección x de gasto Q = q_* x. Exceptuando la sección x = L, para eliminar los tanteos es preferible se leccionar una serie de tirantes empezando desde cero y con ellos determinar a partir de la ecuación de esta do crítico el valor de Qc a que corresponden y de éste el de x. La tabla 7.1 presenta los resultados de estos cálculos y la Fig. 7.7 el perfil de la línea decríticos.

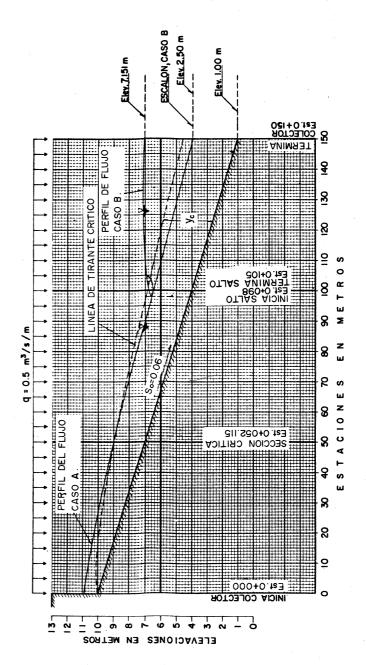
Debido a que, en principio, se ignora el tipo de perfilque se va a producir, convendría realizar un cálculo preliminar de x a partir de la ec. (7.10), utilizando las caracterísiticas de régimen crítico en la secciónfinal y que son: $y_C = 3.54267 \text{ m}$, $A_C = 15.13193 \text{ m}^2$; — $B_C = 6.04267 \text{ m}$; $R_{L} = 1.45197 \text{ m}$ y n = 0.015. Resultaque: $x_C = 28.1495 \text{ m}$ <150 m, por lo cual se sospecha de la existencia de una sección de control en algún punto intermedio del canal. Para ubicar la sección de control es necesario efectuar diferentes tanteos de x_C — con las caracterísitcas de la posible sección críticaque pudiera ocurrir y haciendo que se satisfaga la ec. (7.10). En efecto, en el tanteo final, se supone — $x_C = 52.11482 \text{ m}$, para la cual: $y_C = 1.94418 \text{ m}$, — — $A_C = 6.75038 \text{ m}^2$; $B_C = 4.44418 \text{ m}$ y $R_{hC} = 0.98584 \text{ m}$. De la ec. (7.10) resulta que:

$$S_{f_C} = \left(\frac{26.05741 \times 0.015}{6.75038 \times 0.98584^{2/3}}\right) = 0.00341$$

$$x_{\rm C} = \frac{8 \times 0.5^2}{9.81 \times 4.44418^2 (0.06 - 0.0017085)} = 52.11482 \text{ m}$$

que es igual al valor supuesto.

El perfil del flujo resultante queda dentro de la región D de la Fig. 7.2 debido a que no hay salto hidráulico. La parte del perfil en régimen subcrítico se calcula desde $x_{\rm C}$ = 52.11482 m hacia aguas arriba y lade supercrítico hacia aguas abajo. El cálculo se efectúa con el método numérico mediante las ecs. (7.16) y (7.18).


La tabla 7.2 muestra los resultados finales obtenidospor computadora para las dos direcciones señaladas enla zona del canal colector, utilizando la sección de control. En la Fig. 7.7 aparece el perfil del flujo en el que se distinguen las dos partes del perfil típi co de la zona C de la Fig. 7.2.

Aguas abajo de la Est. 0 + 150.00 el comportamiento ycálculo del perfil del flujo sigue los lineamientos para un flujo variado de gasto constante.

Solución b. Al utilizar el escalón positivo, se forma el tirante crítico sobre el mismo para el gasto total, esto es: $y_C = 3.54267 \text{ m}$. De la ecuación de energía, -

Tabla 7.1 Cálculo de la línea de tirante crítico en el canal del ejemplo 7.3, (b=2.5 m, k=0.5).

УС	$^{\rm A}{_{\rm C}}$	ВС	Q_{C}	V _C	х
.1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 2.1 .3 1.4 5.6 1.7 1.8 9 2.1 2.3 2.4 2.5 2.7 2.8 9 3.3 3.3 3.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	.255 .52 .795 1.08 1.375 1.68 1.995 2.655 3.355 3.355 3.72 4.095 4.48 4.875 5.695 6.555 7.455 7.92 8.395 8.88 9.375 9.88 9.375 10.92 11.455 12.555 12.13.695 14.28 14.875 15.1319	2.789 3.3.456789 4.123456789 1.23456789 4.4.56789 1.23456789 1.23456789 0427	.2501 .7148 1.3268 2.0643 2.9156 3.8736 4.9337 7.3484 8.6993 10.1443 11.6828 13.3145 15.039 16.8565 18.7669 20.7707 22.868 25.0592 27.3448 29.7254 32.2013 34.7732 37.4417 40.2074 43.071 46.033 49.0942 52.553 55.5169 58.8797 62.3445 65.9119 69.5826 73.3575 75	.9809 1.3745 1.6689 1.9114 2.3057 2.473 2.6262 2.7698 3.014514 3.3569 3.45743 3.64564 3.3569 3.45743 3.64564 3.9873 4.0628 4.121888 4.4958 4.4958 4.6264 4.7519 4.8128 4.9564	.5003 1.4295 2.6536 4.1286 5.8312 7.7473 9.1854 14.6968 17.3985 20.2886 23.36289 30.078 33.7129 37.5339 41.5435 45.7384 59.4507 69.5464 74.8835 80.4142 92.0661 511.0738 11.07

CANAL FLUJO EN EL DE F16.

sin pérdidas, para la zona del escalón se tiene que:

$$y_L + \frac{V_L^2}{2g} = 1.60 + 3.54267 + \frac{4.9564}{2g}^2 = 6.3948 \text{ m}$$

siendo también que $\rm A_L=75/V_L$, la solución para $\rm Y_L=-6.151$ m. En efecto: $\rm A_L=34.2949$ m²; $\rm V_L=2.1869m/s; -V_L^2$ /2g = 0.2438 m y

$$Y_L + \frac{V_L^2}{2q} = 6.3948 \text{ m}$$

El parámetro G de la Fig. 7.2 vale: $G = \frac{0.06 \times 150}{6.151} = 1.463 \text{ y para } F_{\text{L}} = 2.1869 / \sqrt{9.81 \times 3.9643} = 0.35$

Se cumple que: $G > 1 + F_{rL}$, por lo cual nos encontramos en la región C de la Fig. 7.2, con salto hidráulico en la zona de régimen supercrítico y después, subcrítico.—Enla tabla 7.3 se presentan los cálculos de perfil del flujo en régimen subcrítico, para $y_L = 6.151$ m y ahora controlado desde la sección $x_L = 150$ m y hacia aguas —arriba. Desde la Est. 110 hasta la 104, los cálculos — se hicieron con $\Delta x = 1.0$ m. También, en la tabla 7.2 —aparecen cálculos similares para el perfil en supercrítico desde la Est. 0 + 095 hasta la 100.00. Con los —tirantes de este último perfil se calcularon los conjugados mayores que estarían ubicados a la distancia — L = 7.9 ($y_2 - y_1$) (ec. 4.28) desde la sección de conjugado menor, y se dibujaron todas la líneas en la Fig. —7.7, en la que se observa que el salto hidráulico se inicia aproximadamente en la Est. 0 + 098.

El detalle de estos cálculos se presenta a continuación en el supuesto de que el salto se inicia en la Est. - 0 + 098 y termina en la 0 + 105. El tirante del per - fil supercrítico (tabla 7.2) en la est. 0 + 098 es - yı = 2.4465 m, Vı= 5.37923 m/s y Q_1 = 49 m³/s. El tiran te del perfil subcrítico (tabla 7.2) en la Est. 0 = $1\overline{0}$ 5 es y₂ = 3.29863 m, V₂= 3.83575 m/s y Q_2 = 52.5 m³/s. - Si las estaciones son correctas, deben verificarse.las ecs. (4.9) para el conjugado mayor y (4.28) para la lon gitud del salto. Debido a que la ec. (4.9) vale paragasto constante y en este caso el gasto en la Est. - + 0 + 98 es distinto del de la Est. 0 + 105.00, se uti

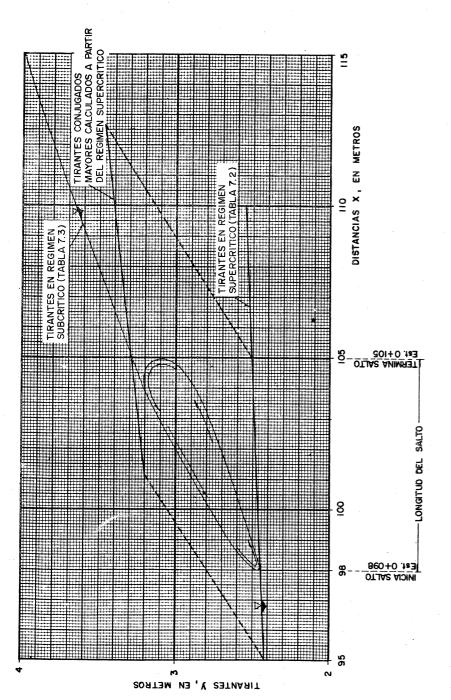
		•		
0.5 m ³ /s/m, s _o	y1 + S _o A	2.071 2.1823 2.0347 2.0347 1.9526 1.64953 1.5576 1.5529	y2 + Ay'	2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 2 3892 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
caso a, q _* = 0	S _o Δx	_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Δy'	82888888888888888888888888888888888888
del ejemplo 7.3,	$y_2 + y'$	2.0719 2.0719 2.1814 2.1097 2.0338 1.9517 1.7619 1.5169 1.5169	¥1+ S _o ∆x	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
perfil de flujo en el cmnal d	Δy'	1277 1277 1272 12274 12274 12274 12071 1998 1867 1867 135	S _o ∆X	444
	>	3.8601 3.7035 3.4737 3.2443 2.9958 2.7287 2.1389 1.7506 1.3209	, ,	3.8601 4.40535 4.40535 4.4033 4.481 4.819 4.819 8.819
Cálcuio del bcrítico.	٥	26.0574 25.5 20.5 20.5 17.5 112.5 10.5 7.5 6.5	Supercrítico Q	26.0574 440.5 440.5 440.5 440.5 440.5 440.5 440.5 470.5
Tabla 7.2 Régimen Su	۶	1.9442 1.9442 1.8823 1.8104 1.5521 1.5621 1.3495 1.3495 1.0529 1.0529	Régimen (1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	×	52. 1148 445 440 440 440 440 440 440 440 440 440	×	25.1148 25.057 27.057 2

liza el promedio $^{\circ}$ O = 51.75 m /s. De esta manera, losparámetros para la Est. O + 98, de tirante y_1 = 2.4465m, son:

$$F_{M_1} = \frac{51.75}{\sqrt{9.811 \times 0.5 \times 2.4465}} = 3.5297$$
 $t_1 = \frac{2.5}{0.5 \times 2.4465} = 2.0437$

y al observar la ec. (4.9), el conjugado mayor es $y_2=3.28911$ m y prácticamente igual al de la Est. - 0 + 105 m. La longitud del salto es: $\ell = 7.9(3.28911$ - 2.4465) = 6.6565 m, esto es, termina en la Est. 104.65 m (prácticamente la 105), con lo cual el tanteo es correcto. La Fig. 7.8 presenta el detalle de estos cálculos..

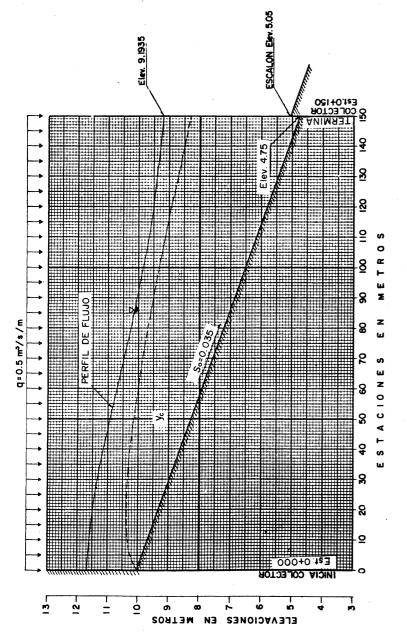
Solución c. Es necesario repetir cálculos similaresa los del caso anterior para el escalón positivo, ahora de 0.30 m. Esto es que:


$$Y_L + \frac{V_L^2}{2q} = 0.30 + 3.54267 + \frac{4.9564}{19.62}^2 = .5.0948 \text{ m}$$

Esta condición se satisface para y_L = 4.4435 m, V_L = 3.57465 m/s, Fr_L = 0.6566 y la sección final nuevamente es de control. Debido a que la pendiente es ahoramenor y el tirante y_ > y_, el perfil es seguramente subcrítico y por tanto se cálcula desde la sección final hacia aguas arriba. La tabla 7.4 muestra los cálculos del perfil de flujo y en ella se observa que Frcrece desde la estación cero hasta un máximo en la 110 y después disminuye. Esto es congruente con un perfil ubicado en la zona B de la Fig. 7.2 y se presenta en la Fig. 7.9.

Solución d. Debido a que la altura del escalón es — $\frac{1}{1}$ figual que en el caso c, el tirante y_1 debe ser 4.4435m. La tabla 7.5 muestra los cálculos del perfil del flujo y en ella se observa que Fr crece desde la estación cero hasta un máximo en la final. Esto es congruentecon un perfil en la zona A de la Fig. 7.2 y se presenta en la Fig. 7.10.

Q	
caso	
7.3.,	
ejemplo	
del	
s de flujo en el canal del e	
el	
en	
flujo	90.0
qe	II
le los perfiles	.5 m3/s/m, S
los	1*=0.51
фe	
Cálculo de los	<u>ה</u>
7.3.	
Tabla 7.3	


	44														
	$y_2 + \Delta y$	000	5.8456	5.5406	5.234	4.9251	4.6117	4.2913	3.9581	3.6494	3.5797	3.5088	3.4353	3.3587	3.2778
))	ΔУ,	C	າ ຕ	۳.	က.	ლ.	ღ.	.	۳.	90.	90.	90.	90.	90.	90.
	$y_1 + S_0 \Delta x$	6.148	5.8447	5.5403	5.2836	4.9244	4.6113	4.291	3.9576	3.6489	3.579	3.5079	3.4346	3.358	3.2771
90.0	${ m S_f}$ $\Delta { m x}$	0.003	-0.0039	-0.0053	-0.007	9600.0-	0238	0207	0337	-0.0092	0104	0118	0142	0173	0216
တ	Λ	2.1869	2.3939	2.5155	2.6523	2.8079	2.9888	3.2045	3.473	3.5354	3:6016	3.6721	3.7496	3.8357	3.988
q*= 0.5 m3/s/m,	0	75	70.7	67.5	65	62.5	09	57.5	52	54.5	54	53.5	53	52.5	52
ָּ ה	>	6.151	5.5456	5.2406	4.934	4.6251	4.3117	3.9913	3.6581	3.5894	3.5197	3.4488	3.3753	3.2987	3.2178
	×	150	140	135	130	125	120	115	110	109	108	107	106	105	104

Θ EJEMPLO П HIDRAULICO SALTO DE UBICACION


O caso ന. 7 ejemplo del canal en el 0.035 flujo S_ = (l de s/m, perfil.5 m3/s del = 0. cálculo Tabla

۲. (ئ	6566 66766 66767 667	
$y_1 + S_0 \Delta x$	444 & & & & & & & & & & & & & & & & & &	
$Y_2 + \Delta y$	44448888888888888888888888888888888888	-
Δy,	00000000000000000000000000000000000000	
>.	6.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6)
o O	C C)
× ×	44446666666666666666666666666666666666	•
×	$\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $)

PERFIL DE FLUJO EN EL CANAL DEL F16. 7.9

d (s _o = 0.0	氏 건	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
ejemplo 7.3, caso	% + S ₀ ∆×	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	50
canal del e	$y_2 + \Delta y$	44444444444444444444444444444444444444	ι.
flujo en el	Δy,	0.000000000000000000000000000000000000	
perfil de	>	0.000000000000000000000000000000000000	0
álculo del	O	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	0
a 7.5 Cálo	>	44444444444444444444444444444444444444	471
Table	×	2446889211111111111111111111111111111111111	0

7.3

EJEMPLO

DEL DEL

CANAL

EN EL

FLUJO

9

7.10

7.3 Flujo con gasto decreciente

7.3.1 Aspectos generales

Un ejemplo clásico de flujo con gasto decreciente loconstituye el vertedor lateral, paralelo al escurri-miento principal, que se construye sobre el bordo de un canal o de un conducto colector o alcantarilla. Es te tipo de vertedor ha sido ampliamente utilizado para desalojar el gasto excedente al de diseño, acumulado en un canal de conducción por el ingreso de aguas de lluvia sobre la superficie o por entradas accidentales en su curso. También se ha utilizado en sistemas de alcantarillado, donde es costumbre desviar el gasto que exceda de 6 veces el de la época de seguia hacia un río o corriente y tratar el resto en plantas de purificación. En este caso, el vertedor ha caído en desuso, por la eficacia de otras estructuras como sifo nes y cámaras de forma espiral. Otro ejemplo de flujo con gasto decreciente lo constituye el desbordamientodesde un canal principal o río, hacia un cauce de ali vio. El gasto en el canal principal puede también de crecer por la existencia de una toma lateral o por una rejilla en el fondo.

La Fig. 7.11 presenta la planta de tres variantes de - vertedor lateral, pudiendo haber casos en que la tota- lidad del gasto en el canal principal se desvíe hacia- el vertedor lateral.

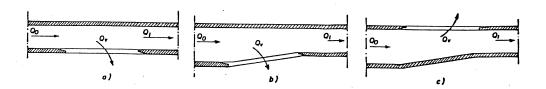


Fig. 7.11 Disposición de vertedores laterales

La Fig. 7.12 muestra la disposición de una rejilla enel fondo del canal y la conformación del flujo a lo largo de la misma.

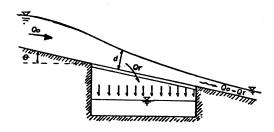


Fig. 7.12 Flujo sobre una rejilla de fondo

7.3.2 Ecuación dinámica

Como antes se indicó, la ecuación de la energía es lamás adecuada para analizar el flujo espacialmente va riado en que el caudal decrece por la salida lateral de una parte o del total del gasto. La energía totaldel flujo en una sección transversal del canal, medida desde un plano de referencia cualquiera vale:

$$H = z + d \cos \theta + \frac{\alpha Q^2}{2g A^2}$$

donde d es el tirante medido en dirección perpendicu - lar a la plantilla.

Derivando esta ecuación con respecto a x se obtiene que:

$$\frac{dH}{dx} = \frac{dz}{dx} + \cos \theta \frac{dd}{dx} + \frac{\alpha}{2g} \left[\frac{2Q}{A^2} \frac{dQ}{dx} - \frac{2Q^2}{A^3} \frac{dA}{dx} \right]$$

Haciendo que: $dH/dx = -S_f$; $dz/dx = -S_O$ y que:

$$\frac{dA}{dx} = \frac{dA}{dd} \frac{dd}{dx} = B \frac{dd}{dx}$$

donde B es el ancho de la superficie libre de la sec-ción transversal y resulta finalmente que:

$$\frac{\mathrm{dd}}{\mathrm{dx}} = \frac{\mathrm{S_0} - \mathrm{S_f} - \frac{\alpha \mathrm{Q}}{\mathrm{gA}^2} \frac{\mathrm{dQ}}{\mathrm{dx}}}{\cos \theta - \mathrm{F_r}^2} \tag{7.20 a}$$

y cuando el ángulo θ de inclinación de la plantilla es pequeño, entonces: cos $\theta \simeq 1$ y d $\simeq y$, resultando que:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{S_0 - S_f - \frac{\alpha Q}{gA^2} \frac{\mathrm{d}Q}{\mathrm{d}x}}{1 - F_r^2}$$
 (7.20 b)

Estas son las formas de la ecuación dinámica del flujo espacialmente variado con gasto decreciente y difieren de la ec. (7.9) sólo en el coeficiente del tercer término en el numerador.

La ec. (7.20) también puede obtenerse a partir de la -ecuación de impulso y cantidad de movimiento si se con sidera que en el flujo con gasto decreciente no se adíciona cantidad de movimiento. Esto implica eliminar = al término que contiene a dQ en los desarrollos para - obtener la ec. (7.9), lo cual puede hacerse desde la - (7.4).

7.3.3 Análisis de los perfiles de flujo.

En un canal con gasto decreciente se tiene siempre que dQ/dx < 0 y, en ausencia de fricción (S $_{\rm f}$ = 0), el numerador de la ec. (7.20) es siempre positivo. El signo de dy/dx es igual al que tiene el denominador, según que ${\rm F}_{\rm r}$ sea menor o mayor que 1.

Esto se observa en la Fig. 7.13 que muestra los trestipos principales de perfil de flujo que se presentanen un canal de gasto decreciente, con desviación hacia un vertedor lateral. Perfiles similares ocurren en el caso que la desviación sea hacia una rejilla en el fondo del canal.

do $F_r > 1$, de la ec. (7.20) resulta que dy/dx < 0. Elperfil se presenta en canales de pendiente suave, altura w del vertedor menor que y y L suficientemente grande, generando así un perfil del tipo M2 hacia aguas arriba que se inicia desde y correspondiente a Q_o .

El perfil 2 ocurre en canales de pendiente pronunciada, donde se produce flujo uniforme supercrítico aguas - - arriba y tiene efecto sólo hacia aguas abajo.

En ambos perfiles, el tirante disminuye gradualmente a-lo largo del tramo L manteniendo el régimen supercrítico, para después alcanzar el tirante normal correspon diente a Q_L Esto ocurre de manera gradual en el perfil 2, si se mantiene aguas abajo la pendiente pronun ciada o mediante salto hidráulico si la pendiente es suave.

c) Mixto. El tirante del canal en la sección iniciales igual o menor que el crítico (perfiles 1 y 2 de la-Fig. 7.13), disminuye gradualmente hacia aguas abajo - hasta formar un salto hidráulico dentro del tramo L y-después aumenta gradualmente (Fig. 7.13 c). Antes del salto el perfil es del tipo supercrítico (1 ó 2) y des pués del salto es subcrítico, lo que combina los dos - tipos de perfil a y b de la Fig. 7.13.

7.3.4 Integración numérica

Las soluciones directas de la ec. (7.20) son complicadas e incompletas, debido a que se desconoce cómo va - ría Q con x, A esto hay que agregar la variabilidad - con que el agua se desvía hacía el vertedor lateral orejilla de fondo. En el caso de perfiles a régimen - subcrítico puede considerarse que dicha desviación esen dirección perpendicular al flujo, pero es más dificil predecirlo en otros casos. Por otra parte, el perfil supercrítico está controlado desde aguas arriba, - debiendo hacer consideraciones adicionales para su aná lisis. El mixto tiene además control desde aguas abajo.

La solución numérica puede fácilmente obtenerse, si seconsidera que en el flujo con gasto decreciente el decremento ΔQ en el tramo Δx no produce cambio en la cantidad de movimiento. Esto implica que las ecs. $(7.15\overline{a})$ y(7.17) se simplifiquen como sigue (ref. 1):

$$y_2 - y_1 = -\alpha \frac{V_2^2 - V_1^{\frac{1}{2}}}{2g} + S_0 \Delta x - \frac{S_{f_1} + S_{f_2}}{2} \Delta x$$
 (7.21)

$$\Delta y' = \alpha \frac{V_2^2 - V_1^2}{2q} + \frac{S_{f_1} + S_{f_2}}{2} \Delta x$$
 (7.22)

La ec. (7.21) representa la ecuación de energía aplicada a un tramo de canal de longitud Δx , limitado por la sección 1 aguas arriba y 2 aguas abajo, donde las velocidades en cada sección deben calcularse con el gasto que pasa por ellas. Esto es: $V_1 = Q_1/A_1$, $V_2 \neq Q_2/A_2$, $Q_2 = Q_1 - AQ$ siendo AQ el gasto desviado al exterior del canal en el tramo Δx .

El decremento ΔQ depende de que la desviación se realice a través del vertedor lateral o de la reja de fondo, pero en ambos casos es función del tirante y del ángulo con que se efectúe la desviación. Por lo que se refiere a la distribución de velocidades, ésta es variable en la sección transversal del canal; en el casodel vertedor lateral el coeficiente α de energía puede ser hasta de 1.30.

En los siguientes incisos se explica la manera de calcular ΔQ y los resultados experimentales que intervienen en cada caso, así como procedimiento de ajuste para el valor de α en el caso del vertedor lateral.

7.3.5 El vertedor lateral

7.3.5.1 Perfil de flujo subcrítico

El vertedor lateral ha sido estudiado experimentalmente por Schaffernak de 1915 a 1918 (ref. 15), Engels de 1917 a 1918 (ref. 15), Coleman y Smith en 1923 (ref. 59) y Eherenberger en 1934 (ref. 60). En general, elinteres fue determinar la relación entre el gasto quesale del canal, la longitud del vertedor, los tirantes al inicio y final del mismo y el coeficiente de descar ga. Sin embargo, los resultados tuvieron poca aplicación.debido principalmente al desconocimiento de los intervalos y tipo de perfil a los que se aplicaban.

Con el fin de simplificar la discusión de los métodosde análisis, conviene hacer la presentación empezandopor el perfil de flujo subcrítico cuyo detalle se mues

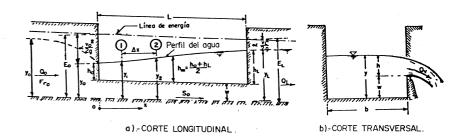


Fig. 7.14. Vertedor lateral con perfil de flujo subcrítico

De Marchi (ref. 61) realizó por primera vez la integra ción directa, con la hipótesis de que los vertedores — laterales usualmente no son largos y que S $_{\rm c}$ esto es, canales con energía específica constante. Conside rando también un canal practicamente horizontal, de — sección rectangular y $^{\alpha}$ = 1, de la ec. (7.20 b) resulta que:

$$\frac{dy}{dx} = \frac{Qy \ (- \ dQ/dx)}{gb^2 \ (y^3 - Q^2)}$$
 (7.23)

Siendo la energía específica constante en cualquier - sección transversal, se tiene que:

$$Q = by \sqrt{2g (E - y)}$$
 (7.24)

donde b es el ancho del canal y E la energía específica.

La descarga sobre el vertedor, por unidad de longitud - de cresta, está dada por la fórmula clásica del verte -

dor rectangular (ec. 7.5 del Vol. I):

$$-\frac{dQ}{dx} = \frac{2}{3} \mu \sqrt{2g} (y - w)^{3/2} = C (y-w)^{3/2}$$
 (7.25)

donde C = $\frac{2}{3}\sqrt{2g}$ μ es el coeficiente de descarga y wes la altura del umbral del vertedor desde la plantilla del canal.

Con las ecs. (7.24) y (7.25), la ec. (7.23) se trans - forma como sigue:

$$\frac{dy}{dx} = \frac{2 C}{\sqrt{2g'b}} \frac{\sqrt{E - y} (y-w)^{3/2}}{(3y - 2E)}$$

De Marchi integró esta ecuación resultando la siguiente solución:

$$x = \sqrt{2g} \quad \frac{b}{C} \quad \left[\begin{array}{c} \frac{2E-3w}{E-w} \sqrt{\frac{E-y}{y-w}} - 3 \text{ áng sen } \sqrt{\frac{E-y}{E-w}} + \text{const.} \\ (7.26 \text{ a}) \end{array} \right]$$

La función que aparece en el paréntesis rectángular de la ec. (7.26a) se representa por ϕ (y/E) y su valor pue de también obtenerse de la Fig. 7.15. Resulta así que:

$$x = \sqrt{2g} \frac{b}{c} \phi (\frac{y}{E}) + const(7.26 b)$$

lo que permite determinar el perfil del flujo a lo la $\underline{\mathbf{r}}$ go del vertedor.

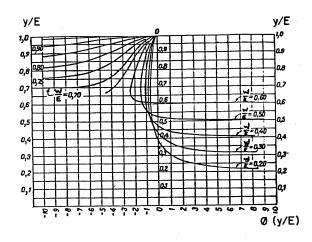


Fig. 7.15. Función ϕ (y/E) de de Marchi en la ec. (7.26 b) (ref. 61).

De las ecs. (7.26) la longitud del vertedor resulta - que es:

$$L = \sqrt{2g} \qquad \frac{b}{c} \left[\left(\phi \left(\frac{y_L}{E} \right) - \phi \left(\frac{y_O}{E} \right) \right]$$
 (7.27)

Cuando se conoce la longitud del vertedor, el tirante-y el gasto en el canal aguas abajo del mismo, se puede utilizar la ec. (7.27) para conocer $\phi(y_0/E)$. Con ésta y la ec. (7.24) se obtiene el tirante y gasto aguas arriba del vertedor y en el canal para las condiciones dadas, recordando que E permanece constante.

La longitud necesaria en el verteder para reducir el gasto en una magnitud especificada puede determinarsemediante un cálculo similar, excepto que se requiere tantear a L a fin de obtener el gasto aguas arriba, que debe coincidir con el valor especificado.

Diversos autores han intentado determinar la relaciónentre gasto vertido y longitud de cresta utilizando la ecuación general

$$Q_{V} = C L h^{3/2}$$
 (7.28)

donde C es un coeficiente de descarga, L la longitud — del vertedor y h la carga sobre la cresta, ésta con diferentes interpretaciones según cada autor, como se explica adelante.

Agassijewa en 1915 (ref. 31) determinó experimentalmen te que si h se considera como la carga h_0 en la sección inicial, el coeficiente de descarga se obtiene de la - siguiente ecuación:

$$C = C_{0} - \left[0.388 \left(\frac{L}{b} \right)^{1/6} + \frac{1 + 0.18 L/b}{\frac{2.79}{1+1.185 L/b} \left(\frac{1.28}{y_{1}/y_{0}-1.25} \right)^{2}} \right]$$

donde $C_{\rm O}$ es el coeficiente de descarga para un verte — dor recto, con flujo normal a la cresta, de la misma — longitud que el real.

Las restantes variables corresponden a las indicadasen la Fig. 7.14.

0. Streck en 1950 (ref. 62) determinó que para $h = h_L + 0.25$ ($h_0 - h_L$), el coeficiente C = 1.87. Zschiesche en - 1954 (ref. 63) encontró experimentalmente que para - h = 0.5 ($h_0 + h_L$), los valores del coeficiente son: - - C = 2.06 en caso de un vertedor lateral de cresta delgada, C = 2.175 con cresta redonda y C = 1.648 con cresta de forma trapecial y estrechamiento en el canal - aquas abajo.

M. Schmidt en 1954 (ref. 1) realizó expriencias convertedores laterales y determinó que C = 0.95 C $_{\rm O}$ cuando h = 0.5 (h $_{\rm O}$ + h $_{\rm L}$) es la carga media sobre el vertedor y C $_{\rm O}$ tiene la misma interpretación de antes. También para calcular longitud L necesaria del vertedor para un gasto Q $_{\rm V}$ dado, Schmidt utiliza la ecuación de energía entre la sección inicial y final del vertedor-(Fig. 7.14) (ec. 7.21) como sigue:

$$S_0 L + y_0 + \alpha_0 \frac{V_0^2}{2g} = y_L + \alpha_L \frac{V_L^2}{2g} + S_f L$$

Schmidt (ref. 1) determinó experimentalmente en cana -

les rectangulares que S \simeq S y con excepción del caso límite $Q_L=0$, que α_L es unpoco mayor que α . Al principio es suficientemente aproximado considerar que $\alpha_0=\alpha_L$, por tanto se obtiene que:

$$y_{O} = y_{L} - \alpha \frac{V_{O}^{2} - V_{L}^{2}}{2g}$$

o bien, con V_{O} = Q_{O} / b y_{O} , y E_{L} = y_{L} + α $\frac{V_{L}^{2}}{2g}$, resultaque:

$$y_0^3 - E_L \quad y_0^2 + \alpha \frac{Q_0^2}{2q b^2} = 0 \quad (7.29)$$

La ec. (7.29) permite calcular y_0 , conocidos el gasto-inicial, la energía específica E_L al final del verte - dor y el ancho del canal. De aquí se determina - - - $h_0 = y_0$ - w y también $h_m = h$.

En la ec. (7.29) se necesita el valor de α . Para iniciar los cálculos, Schmidt propone como valor iniciala = 1.1 que debe corregirse mediante un coeficiente - n, de manera que α = n α depende de la relación $h_m/-(h_m+w)$ como lo indica la Fig. 7.16, debiendo repetir se el cálculo de y hasta que los valores de α coincidan. La longitud h del vertedor resulta de la ec. - - (7.29).

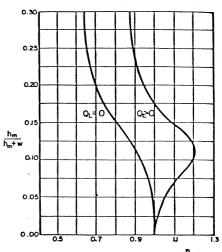


Fig. 7.16 Valor del coeficiente n para el cálculo de α en la ec. (7.29).

El método de cálculo antes indicado vale hasta números de Froude $F_{ro} = V_o \sqrt{g} \ y_o = 0.75$. Si $F_{ro} > 0.75$ se presenta un cambio de régimen al principio del verte dor y un salto hidráulico a lo largo del mismo, como en la Fig. 7.13 c. El comportamiento en este caso esmuy complicado, pero se puede decir que la eficiencia del vertido, como función de la carga, disminuye considerablemente y el gasto vertido poco aumenta con la longitud (ref. 1).

Collinge en 1957 (ref. 64) encontró que la descarga - real sobre el vertedor es menor que lo calculado al - utilizar el coeficiente estándar de un vertedor con - flujo normal a la cresta. Los experimentos de Frazer- (ref. 65) indican que C = 2.2636 sólo cuando el número de Froude en el canal es pequeño y que más bien varíasegún la ecuación siguiente:

$$C = 2.2912 - \frac{yc}{y} - 0.0774 \frac{yc}{y} (7.30)$$

De acuerdo con estos resultados, de la ec. (7.25) puede determinarse el decremento ΔQ del gasto, para usar en la solución numérica como sigue:

$$\Delta Q = C (y_m - w)^{3/2} \Delta x$$
 (7.31)

donde: $y_m = \frac{1}{2}(y_1 + y_2)$, siguiendo la nomenclatura indicada en la Fig. 7.14.

Subramanya y Awasthy en 1972 (ref. 66) demostraron que C <1.84 y que es función principalmente del número de Froude F, del flujo aguas arriba. Utilizando C = 1.84 en el cálculo de la longitud teórica L_t obtenida de la ec. (7.27), ellos determinaron experimentalmente que debe incrementarse multiplicándose por el factor de corrección:

$$K = \frac{3.1}{2.8 - F_{\text{ro}}}$$
 (7.32)

Cunado se conoce el gasto en el canal aguas abajo y la longitud del vertedor, y se desea el gasto vertido y el de aguas arriba, se pueden utilizar las ecs. (7.27) y-(7.32) mediante iteraciones. Para ello se supone un -valor de tanteo de $L_{\rm t}$ y se determina φ ($^{\rm y}_{\rm O}/E$) de la ec

(7.27) y de aquí a $y_{\rm O}/E$ de la Fig. 7.15. Con estos va lores se obtiene $V_{\rm O},~Q_{\rm O},~F_{\rm PO},~$ de aquí K de la ec.— = (7.32) y con éste un nuevo valor de $L_{\rm t}=L/K,$ reiteran de el proceso hasta encontrar iguales valores al principio y final de la iteración.

.3.5.2Perfil de flujo supercrítico

En el caso de vertedores laterales con perfiles de los tipos presentados en la Fig. 7.13 b puede seguirse elmétodo de análisis presentado por Ackers en 1957 (ref. 67). Un esquema de las características del flujo sepresenta en la Fig. 7.17 y se puede demostrar que éste ocurre cuando la relación w/ H_{\bullet} < 0.6.

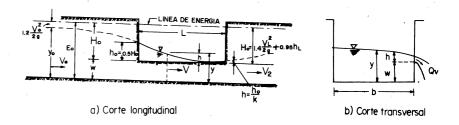
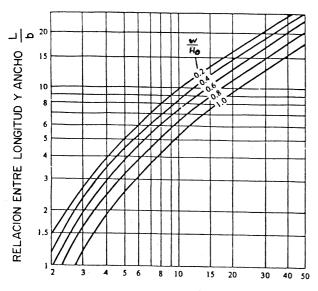


Fig. 7.17 Vertedor lateral con perfil de flujo supercrítico

Ackers obtuvo una ecuación general para el cálculo dela longitud del vertedor mediante la ecuación de energía, con la consideración de distribución de velocidades y además la fórmula de descarga de vertedores. Di cha ecuación es:

L= 2.03 b
$$\left\{ 2\sqrt{2} \sqrt{\frac{k-0.4}{k-0.4}} \left(1 - 0.4 \frac{w}{H_0}\right) + 0.31 \frac{w}{H_0} - 0.948 \right\}$$
 (7.33)

donde L longitud del vertedor, en m


b ancho del canal, en m

 $k = h_0/h_{I}$

h carga sobre el vertedor en el extremo aguas arriba, en m

- h_{τ} carga sobre el vertedor en el extremo aguas abajo en m
- ${\tt W}$ altura de la cresta del vertedor desde la plantilla del canal, en ${\tt m}$
- $\rm ^{H}_{\rm o}$ energía específica del escurrimiento relativa a lacresta del vertedor, en m

La Fig. 7.18 muestra la representación gráfica adimensional de la ec. (7.33) relacionando k con L/by utilizando como parámetro a w/H_{\odot} .

RELACION ENTRE CARGAS DEL VERTEDOR : $K = \frac{h_o}{h_L}$

Fig. 7.18 Representación gráfica de la ec. (7.34)

Utilizando diferentes valores de K, la ec. (7.33) se - simplifica a expresiones más sencillas algunas de las-cuales se presentan en la tabla 7.6

Tabla 7.6 Expresiones simplificadas de la ec. (7.33)

K	Ecuación para longitud del vertedor
5	$L = 2.03 \text{ b} (2.81 - 1.55 \text{ w/H}_0)$
7	$L = 2.03 \text{ b} (3.90 - 2.03 \text{ w/H}_0)$
10	$L = 2.03 \text{ b} (5.28 - 2.63 \text{ w/H}_0)$
15	$L = 2.03 \text{ b} (7.23 - 3.45 \text{ w/H}_0)$
20	$L = 2.03 \text{ b} (8.87 - 4.13 \text{ w/H}_0)$

Para efectos del cálculo de la energía específica delescurrimiento aguas arriba del vertedor, la carga de velocidad se determina como: α $V_{\rm O}^2/2g$, donde α es un coeficiente de corrección por distribución de velocidades, que Ackers determinó experimentalmente con valor de 1.2. Por tanto, la altura de la energía referida a la cresta del vertedor sería:

$$H_{O} = \alpha' (y - w) + \alpha \frac{V^{2}}{2g}$$

donde α es un coeficiente de corrección a la carga depresión.

Por otra parte, Ackers también obtuvo experimentalmente que la carga sobre la cresta al inicio del vertedor - vale: $h_0 = 0.5 \text{ H}_0$ y al final $h_1 = H_0/2$ k y que $\alpha' = 1$. También encontró que para el extremo aguas abajo del - vertedor: $\alpha = 1.4$ y $\alpha' = 0.95$.

Ejemplo 7.4 Un canal rectangular tiene 10 m de anchotirante normal de 1.75 m, pendiente $S_0=0.00005$ y rugo sidad n = 0.015 y en caso de lluvias fuertes aumenta – su caudal hasta 20 m³/s. Con el fin de no sobreelevar demasiado los bordos, se requiere de un vertedor lateral que descargue los excedentes, considerando permisible que el tirante aguas abajo se sobreleve hasta 2.10 m. a) Calcular la longitud necesaria en el vertedor – lateral utilizando los métodos de Schmidt y de Marchi. El umbral del vertedor se encuentra a la altura w=1.7- m.y el coeficiente de descarga $\mu=0.75$ b) Determinar-

el perfil del agua enla zona del vertedor mediante el-método numérico.

Solución a. Para los tirantes de 1.75 y 2.10 m, el - gasto en el canal vale:

$$Q_{1.75} = \frac{17.5}{0.015} \times 1.2963 \times 0.00005 = 9.81 \text{ m}^3/\text{s}$$

$$Q_{2.1} = \frac{21}{0.015} \times 1.4789 \times 0.00005$$
 = 12.85 m³/s

Por tanto, el gasto por el vertedor tiene que ser: $\rm Q_{V} = \rm Q_{O} - \rm Q_{L} = 20-12.85 = 7.15~m3/s$.

Además, con $\alpha = 1.1 \text{ y}$:

$$V_{L} = \frac{12.85}{21} = 0.6119 \text{ m}^{3}/\text{s}$$

$$E_L = 2.1 + 1.1 \frac{0.6119^2}{2g} = 2.121 \text{ m}$$

$$\alpha \frac{Q_0^2}{2gb2} = 1.1 \frac{20^2}{2gx10^2} = 0.2039$$

De la ec. (7.29) se obtiene que:

$$y_0^3 - 2.121 y_0^2 + 0.2243 = 0$$

cuya solución es y = 2.069 m. Las cargas sobre el vertedor son entonces:

$$h_0 = 2.069 - 1.75 = 0.319 \text{ m}$$

$$h_T = 2.10 - 1.75 = 0.35 m$$

$$h_{\rm m} = 0.3345 \, \text{m}$$

$$\frac{h_{\rm m}}{h_{\rm m}+w} = \frac{0.3345}{0.3345+1.75} = 0.1605$$

y de la Fig. 7.16 para Q > 0, n = 1.05. Con esto, el nuevo valor es α = 1.1 x 1.05 = 1.155 y de la ec.(7.29) el nuevo y = 2.067 m. Por tanto, se tiene que:

$$h_{O} = 0.317 \text{ m}$$
 $h_{L} = 0.35 \text{ m}$

$$h_{\rm m} = 0.3335 \, \text{m}$$

Con $C_0 = 2/3\sqrt{2 \text{ g}} \times 0.75 = 2.215$, resulta entonces que:

$$L = \frac{7.15}{0.95 \times 2.215 \times 0.3335} \, \frac{3}{2} = 17.645 \, \text{m}$$

Para efectos de control, con $V_0 = 20/20.67 = 0.9676 \text{ m/s}$, el número de Frpude vale:

$$F_{ro} = \frac{0.9676}{\sqrt{9.81 \times 2.067}} = 0.2149 < 0.75$$

Para utilizar el método de Marchi, consideramos como - valores de frontera $y_L = 2.10$ m, $E_L = 2.121$ m, $y_1 = 2.067$ m y C = 0.95x2.215 = 2.104. Por tanto, de la ec. (7.26) resulta que: $\phi(y_1/E) = -1.416142$; $\phi(y_0/E) = -2.312864$ y de la ec. (7.27) se tiene que:

$$L = \sqrt{2g} - \frac{10}{2.104} \left[-1.416142 - (-2.312864) \right] = 18.8783 \text{ m}.$$

Solución b. Para la determinación del perfil de flujo, utilizamos las ecs. (7.22) y (7.31) y mismo coeficiente C = 0.95x2.215 = 2.104. Los cálculos se inician en la sección de gasto 12.85m³/s y tirante de 2.10 m y - hacia aguas arriba con incrementos Δx = 1 m, con excepción del último, el cual se obtiene para la sección - donde el gasto alcanza 20 m³/s. α se considera igual a 1.155. La tabla 7.7 presenta los resultados finales - de las iteraciones.

Tabla 7.7 Perfil de flujo para el caso b del ejemplo-7.4.

L-x	y	Q
(m)	(m)	(m³/s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17.5 17.5 232	2.1000 2.0985 2.0969 2.0953 2.0937 2:092 2.0903 2.0886 2.0868 2.085 2.0813 2.0793 2.0774 2.0754 2.0754 2.0734 2.0714 2.0693 2.0682 2.0681	12.85 13.2842 13.7156 14.1441 14.5696 14:992 15.4113 15.8275 16.2404 16.65 17.0562 17.4591 17.8584 18.2543 18.6467 19.0354 19.4205 19.802 19.9913 20.0000

Ejemplo 7.5 Una alcantarilía de sección cuadrada, de- 0.50 m de lado y n = 0.013, tiene una pendiente suave- de 0.001 y debe conducir un gasto máximo a la płanta - de tratamiento de 0.12 m3/s. Determinar el gasto que- conduciría la alcantarilla aguas arriba de un vertedor lateral de 3 m de longitud.

Solución. El perfil del flujo es seguramente del tipo subcrítico (Fig. 7.14). El tirante normal aguas abajo del vertedor es de 0.355 m. En efecto, resulta que: – A = 0.5 x 0.355 = 0.1775 m²; P = 1.21 m; R_h = 0.1467 m; Q = $\begin{bmatrix} 0.1775 & (0.1467)2/3(0.001)^{1/2} \\ 0.013 & 0.1201 \end{bmatrix}$ /0.013 = 0.1201 m³/s y V = 0.6766 m/s.

La energía específica es:

$$E = 0.355 + \frac{(0.6766)^2}{2q} = 0.3783 \text{ m}$$

Con el fin de que no ocurra el tirante crítico al inicio del vertedor, la altura de la cresta debe ser ma - yor que 2 E/3 y por tanto se considera que q = 0.7 E - como valor práctico mínimo; esto es: w = 0.7 x 0.3783=0.265 m

Para el cálculo, se sigue ahora el método de Subramanya y Awasthy. Con $\text{w/E}_0=0.7$ y $\text{y}_\text{L}/\text{E}=0.355/0.3783=-0.9384$, de la Fig. 7.15 se obtiene ϕ ($\text{y}_\text{L}/\text{E})=-1.6.-\text{Suponiendo}$ un valor de tanteo $\text{L}_\text{t}=2.04\text{Lm}$ y C = 1.84,-de la ec. (7.27) resulta que:

$$2.04 = \sqrt{2g} \quad \frac{0.5}{1.84} \left[-1.6 - \phi \left(\frac{y_0}{E} \right) \right]$$

$$\phi \left(\frac{y_0}{E} \right) = -1.6 - \frac{2.04 \times 1.84}{0.5\sqrt{2g}} = -3.295$$

y con este valor en la Fig. 7.15, se obtiene que y_0/E= 0.805 y y_0 = 0.805 x 0.3783 = 0.3045 m.

Con este tirante y de la ecuación de energía específica

$$0.3783 = 0.3045 + \frac{V_0}{2g}$$

y de aquí: V_0 = 1.2031 m/s y Q_0 = 0.3045 x 0.5 x 1.2031 = 0.1832 m3/s. Siendo el número de Froude: F_{no} = 1.2031 / $\sqrt{9.81 \times 0.3045}$ = 0.6961 y de la ec. (7.32), K = 1.4735- para lo cual la longitud teórica es ahora:

$$L_t = \frac{3.0}{1.4735} = 2.036 \text{ m} \approx 2.04 \text{ (valor de tanteo)}$$

por lo cual, el tanteo es correcto.

El gasto vertido es entonces: $Q_V=0.1832-0.12=-0.0632~m^3/s$, esto es, el 34.5 por ciento del gasto dellegada. Si la longitud del vertedor aumenta a 6m, se puede determinar que el gasto vertido aumenta aproxima damente en un 5 porciento, lo que demuestra que esta estructura es muy ineficiente como obra de desvío de caudales.

Ejemplo 7.6 Un colector tiene 1.20 m de diámetro, - - 0.003 de pendiente y 0.013 de factor de Manning. El -

colector sirve para el drenaje de un sistema de alcantarillado combinado que en la época de lluvias conduce un gasto máximo de 1.9 m 3 /s, del cual el máximo permisible por conducir a la planta de tratamiento es de -0.7 m 3 /s. El gasto máximo en estiaje es de 0.14 m 3 /s-de agua residual cuya totalidad debe ser tratada. Diseñar el vertedor lateral necesario a fin de desviar - el caudal que no puede ser tratado.

Solución. A tubo lleno las características geométri - cas de la sección son: A = 1.131 m², P = 3.7699m; - R_{h_0} = 0.3 m y de la ecuación de Manning: V_0 =1.8881 m/s y Q_0 = 2.1354 m³/s.

Para Q = 1.9 m³/s se tiene Q/Q = 1.9/2.1354= 0.89 y - de la Fig. 2.11 para n constante resulta que y/D = 0.73 siendo el tirante y = 0.73 x 1.2 = 0.876 m y también - V = 1.13 x 1.8881 = 2.1336 m/s. Con el valor del pará metro: Q/ \sqrt{g} D 5 /2 = 1.9 $\sqrt{9.81}$ 1.2 5 /2 = 0.3846. De la-Fig. 3.10 resulta que y /D = 0.63, y = 0.63 x 1.2 = 0.756 m y por tanto, el régimen del flujo en el colector es subcrítico.

De la misma manera, para el gasto de 0.14 m 3 /s, resulta que y = 0.175 x 1.2 = 0.21 m y debido a que el total de este gasto debe ser retenido en el colector, la altura del vertedor desde la plantilla debe ser de por lo menos 0.21 m. También, de la Fig. 2.11 resulta que V = 0.565 x1.8881 = 1.067 m/s.

Eligiendo por seguridad w = 0.24 m, se considera en - principio un perfil supercrítico del tipo 1 en la Fig. 7.13 b y aplicables los resultados de Ackers. La ener gía específica referida al extremo aguas arriba del - vertedor es:

$$H_O = (0.876 - 0.24) + 1.2 \frac{(2.16)^2}{2g} = 0.92 \text{ m}$$

Por tanto: $h_0 = 0.5 \times 0.92 = 0.46$ m y también: w/H == 0.24/0.92 = 0.26 \leq 0.6 lo confirma el tipo de perfîl - supuesto.

Suponiendo que k=10 m en un primer tanteo, según Ackers, de la energía específica respecto de la cresta en el - extremo aguas abajo del vertedor y con h_L = 0.46/10 = 0.046 m, se tiene que:

$$\frac{1.4 \text{ VL}^2}{2g} = 0.92 - 0.95 \times 0.046 = 0.8763 \text{ m}$$

$$\text{VL} = 3.5044 \text{ m/s}.$$

y también: $y_1 = 0.24 + 0.046 = 0.286 \text{ m}$.

Con y/D = 0.286/1.2 = 0.238, de la tabla 2.6 se tieneque A = 0.14322 x $(1.2)^2$ = 0.2062 m². Con esto el gasto a la planta de tratamiento vale:

$$Q = 3.5044 \times 0.2062 = 0.723 \text{ m}^3/\text{s} > 0.7$$

Suponiendo ahora k = 12; $h_L = 0.46/12 = 0.0383 \text{ m y tam}$

1.4
$$\frac{V_L^2}{2g}$$
 = 0.92 - 0.95 x 0.0383 = 0.8836 m
 V_L = 3.5189 m/s

y por tanto: $y_{L} = 0.24 \times 0.0383 = 0.2783 \text{ m}.$

Con y/D = 0.2783/1.2 = 0.2319, de la tabla 2.6 resulta que: $A = 0.1381 \ (1.2)^2 = 0.19886 \ m^2$ y el gasto es:

Q = $3.5189 \times 0.19886 = 0.6998 \text{ m}^3/\text{s} = 0.7 \text{ m}^3/\text{s}$, lo queconfirma que k = 12.

Finalmente, de la ec. (7.33) resulta que:

$$L = 2.03 \times 1.2 \left\{ 2\sqrt{2} \left[\sqrt{11.6} (1-0.4\times0.26) + 0.31 \times 0.26 - 0.948 \right] \right\}$$

$$L = 12.9685 \text{ m}$$

La longitud del vertedor debe ser de 13 m.

7.3.6 Flujo sobre una reja de fondo

Este es un caso de flujo espacialmente variado con gas to decreciente que se presenta cuando se instala una - rejilla en el fondo de un canal, a través de la cual - se deriva un gasto hacia otro canal a nivel inferior.

El flujo se presenta en algunos problemas de drenaje superficial y en captaciones realizadas en corrientesnaturales de alta montaña, las que reciben el nombre de vertedor tirolés (Fig. 7.9) y cuando éstas se combi nan con infiltraciones a través de la pared de una galería, de toma caucásica, Estas estructuras permiten desviar caudales hasta de 10 m3/s mediante rejillas de fondo, ubicadas en posición horizontal o con poca in clinación, sobre una galería construída en el cuerpo de un vertedor a través del cauce y que descarga hacia un canal. Las rejillas se construyen de soleras de acero colocadas en dirección de la corriente, de longitud Lno mayor que 1.25 m, con separaciones que varían de 2a 6 cm y pendiente hasta del 20 por ciento a fin de im pedir el paso de material grueso. Este tipo de toma compite con la convencional en un río, debido a la poca altura (20 a 50 cm) que necesita el vertedor, lo que simplifica la obra disipadora, requiriendo tan solo un zampeado aguas abajo.

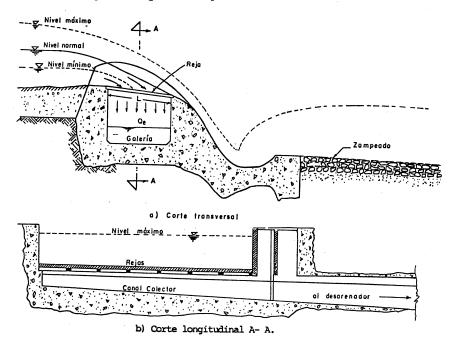


Fig. 7.9 Vertedor tirolés

El flujo sobre rejas tiene gran parecido con el del vertedor lateral ya que el tirante disminuye en la dirección del movimiento y controla el gasto que cae a través de ellas, si bien con una ley distinta.

En general, las rejas tienen un ángulo de inclinaciónque puede ser grande y por esa razón es necesario utilizar la ec. (7.20 a). Además, la curvatura de las líneas de corriente sobre la reja es apreciable, sobre todo al principio de la misma y esto implica que la presión sobre el fondo no sea la hidrostática. Para incluir este efecto, se considera que la carga de presión real sobre el fondo es pheno de la carga de presión real sobre el fondo es pheno de muchos factores y es variable con x. Cuando la presión corresponde a la hidrostática, su valor es n = 1 y se aparta de uno en la zona al principio de la reja.

Para los efectos del desarrollo aquí presentado, se considera que n y θ son constantes. Lo anterior implicaque en el caso de un canal rectangular de ancho b, don de S_O $^{\simeq}$ S_f por ser corto y α $^{\simeq}$ 1, la ec. (7.20 a) resu $\overline{1}$ ta:

$$\frac{\mathrm{dd}}{\mathrm{dx}} = \frac{\mathrm{Qd} \ (-\mathrm{dQ/dx})}{\mathrm{g} \ \mathrm{n} \ \cos \theta \, \mathrm{b^2} \, \mathrm{d^3} - \mathrm{Q^2}} \tag{7.34}$$

Siendo la energía específica: $E_0 = n$ d cos $\theta + \frac{v^2}{2g}$ constante en cualquier sección transversal del canal, setiene que el gasto en dicha sección es:

$$Q = b d \sqrt{2g (E_0 - kd)}$$
 (7.35)

donde: $k = n \cos \theta$. Al substituir la ec. (7.35) en la (7.34), resulta que:

$$\frac{dd}{dx} = \frac{\sqrt{2g} bd^2 \sqrt{E_0 - kd} (-dQ/dx)}{g k b^2 d^3 - 2g b^2 d^2 (E_0 - kd)}$$
(7.36 a)

o bien:

$$dx = \sqrt{\frac{g \ b \ (3 \ kd - 2 \ E_O)}{\sqrt{2} \sqrt{E_O - kd} \ (\frac{-dQ}{dx})}} \ dd$$
 (7.36 b)

Por tanto, el gasto captado por un reja de longitud ¿ es:

$$Q_{r} = Q_{o} \left(1 - \frac{d \sqrt{1 - k d / E_{o}}}{do \sqrt{1 - k d_{o} / E_{o}}} \right) (7.37)$$

Si la captación es total, entonces $d_{\ell} = 0$ y $Q_{\ell} = Q_0$ (Fig.7.20 b).

Según Mostkow (ref. 31), en el caso de rejas compuestas de barras paralelas al escurrimiento como en la Fig. 7.20c, la dirección - del flujo a través de las aberturas es aproximadamente vertical, la pérdida de energía es despreciable y la - carga efectiva es practicamente igual a la energía especifica E con que el escurrimiento llega a la reja.— En cambio, en caso de rejas compuestas de aberturas en forma de malla perforada como en la Fig. 7.20 d, la dirección del flujo a través de las aberturas tiene un ángulo apreciable con la vertical y se vé afectado por los lados de las aberturas al producirse un pérdida de energía apreciable por el cambio de dirección, de in—clinada eventualmente a vertical. Dicha pérdida es aproximadamente igual a la carga de velocidad del flujo sobre la reja, por lo que la carga efectiva es igual a la carga estática o se puede confundir con el tirante.

Por las razones indicadas se distinguen a continuación dos tipos de flujo.

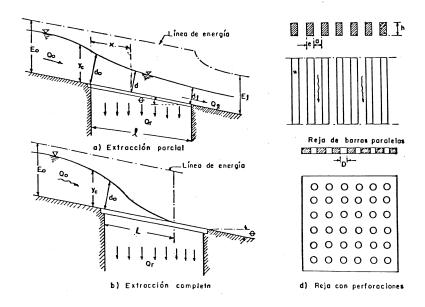


Fig. 7.20 Flujo sobre un reja de fondo

- a. Reja de barras paralelas al flujo.
- El caudal desviado a través del tramo de longitud dx de reja se expresa como sigue:

$$\frac{dQ}{dx} = \epsilon C_d \cos \theta b \sqrt{2g E_Q} = m b \sqrt{2g E_Q}$$
 (7.38)

donde $E_{\rm O}$ energía específica del flujo al iniciar la reja.

b ancho de rejas perpendicular al flujo.

 $m = C_d \in \cos \theta$, coeficiente global de descarga θ ángulo de inclinación de la reja con la horizontal.

C_d coeficiente de contracción a través del espacio entre rejas.

 $\varepsilon = (1-f)\frac{An}{A}$, cociente del área de paso entre rejas entre su área total.

An área neta de paso a través de rejas.
An área total de rejas.
ft ceeficients

coeficiente de obstrucción producida por arenas y gravas que se incrustan entre las rejas y que se toma de 15 a 30 por ciento (0.15 a 0.30).

Cuando la reja es de barras paralelas se tiene que:

$$\varepsilon = (1-f) \frac{a}{a+e}$$

donde a y e se acotan en la Fig. 7.20 c.

Substituyendo la ec. (7.38) en la (7.36 b), al simplifi car resulta:

$$dx = \frac{(3 \text{ kd} - 2 \text{ E}_0) \text{ dd}}{2 \text{ m} \sqrt{\text{E}_0} \sqrt{\text{E}_0 - \text{kd}}}$$
 (7.39 a)

Esta ecuación puede escribirse como sique:

$$dx = \frac{\frac{3}{2} \frac{kd}{E_0} - 1}{m\sqrt{1 - kd/E_0}} dd$$
 (7.39 b)

Integrando, se tiene que:

$$x = C - \frac{d\sqrt{1-kd/E_O}}{m}$$
 (7.40)

La constante C de integración resulta de la condiciónque para: x = 0, $d = d_0$ De la ec. (7.40) resulta en--

$$x = \frac{1}{m} \quad (d_0 \sqrt{1 - k_E \frac{d_0}{c}} - d\sqrt{1 - k_E \frac{d}{E_0}})$$
 (7.41)

Para desviar la totalidad del caudal Q del río a través de la - reja, la ec. (7.41) permite obtener la longitud x = Lnecesaria para alcanzar el tirante d = 0 (Fig.7.20 b);esto es:

$$L = \frac{d_O}{m} \sqrt{1 - k \frac{d_O}{E_O}}$$
 (7.42)

Para la sección inicial $d = d_0$ y de la ec. (7.35) se tiene que: $Q_O = b\sqrt{E_O} d_O\sqrt{2g} (1 - \frac{kd_O}{E_O})$ y substituyendo en la ec. (7.42), ésta se escribe también como sigue:

$$L = \frac{Q_O}{mb \sqrt{2gE_O}}$$
 (7.43)

donde Qo es el gasto en la sección inicial de la rejae igual al total extraído.

b. Reja de malla con perforaciones.

En este caso, el caudal desviado a través del tramo de longitud dx de reja se expresa como sigue:

$$-\frac{dQ}{dx} = \varepsilon C_d \cos \theta b \sqrt{2g kd} = mb \sqrt{2g kd}$$
 (7.44)

donde los términos tienen igual interpretación que enel caso anterior. Substituyendo la ec. (7.44) en la -(7. 36 b), al simplificar resulta:

$$dx = \frac{\frac{3}{2} kd - E_{o})dd}{m \sqrt{E_{o} - kd}\sqrt{kd}} = \frac{1}{m} \left[\frac{3}{2} \frac{\sqrt{\frac{kd}{E_{o}}} dd}{\sqrt{1 - \frac{kd}{E_{o}}}} - \frac{dd}{\sqrt{\frac{kd}{E_{o}} - (\frac{kd}{E_{o}})^{2}}} \right] (7.45)$$

La integración conduce a que:

$$x = \frac{E_{O}/k}{m} \frac{1}{4} \left[\text{áng sen } (1 - 2\frac{kd}{E_{O}}) - \frac{3}{2} \sqrt{\frac{kd}{E_{O}} (1 - \frac{kd}{E_{O}})} \right] + C$$
(7.46)

C se obtiene de la condición que: para x = 0; $d = d_0$ y por tanto se tiene que:

$$x = \frac{E_{O}/k}{m} \left\{ \frac{1}{4} \left[\text{áng sen } (1 - 2\frac{k}{E_{O}} d) - \text{áng sen } (1 - \frac{2k}{E_{O}} d_{O}) \right] - \frac{3}{2} \left[\sqrt{\frac{kd}{E_{O}}} (1 - \frac{kd}{E_{O}}) - \sqrt{\frac{kd_{O}}{E_{O}}} (1 - \frac{kd_{O}}{E_{O}}) \right] \right\}$$
(7.47)

Para d = o, se obtiene x = L necesaria para la captación del total de gasto; esto es:

$$L = \frac{E_{O}/k}{m} \left[\frac{.3}{2} \sqrt{\frac{kd_{O}}{E_{O}}} (1 - \frac{kd_{O}}{E_{O}}) - \frac{1}{4} \text{ áng sen} (1 - 2\frac{kd_{O}}{E_{O}}) + \frac{1}{8} \right]$$
(7.48)

En los dos casos analizados es importante conocer las características del flujo que llega a la reja. Para el vertedor tirolés existe una relación entre ${\bf Q}_0$ y la energía específica ${\bf E}_0$ del flujo que llega, a través de la ecuación de descarga de un vertedor de cresta ancha, que es:

$$Q_{o.} = C_{v} \quad b \quad E_{o} \quad 3/2$$
 (7.49)

donde el coeficiente C_{ν} toma el valor medio de 1.55. - (Ejemplo 1.3). Otros valores aparecen en la tabla 7.9.

Cuando el agua llega desde un canal como en la Fig. --7.20, el tirante crítico ocurre en alguna sección an tes de la reja de manera similar al de la caída librepresentado en el Ejemplo 3.8. En el caso del vertedor tirolés con la geometría de la Fig. 7.21, el tirante crítico ocurre aproximadamente en la sección inicial de la reja y la relación k = d_0/y_C - entre el tiranteperpendicular al inicio y el crítico-disminuye al aumentar e y la pendiente de la reja.

Además: $y_C = \frac{2}{3} E_O$.

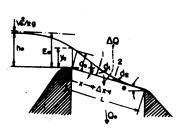


Fig. \$.21 Flujo de llegada a un vertedor tirolés

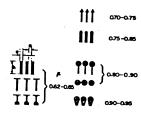


Fig. 7.22 Coeficiente de contracción µ para rejas en vertedor tirolés, según Frank (ref. 68)

La tabla 7.8 muestra los valores experimentales de k - obtenidas por J. Frank (ref. 68) que dependen del ángu lo de inclinación θ . Según Mostkow, los valores típ $\overline{1}$ cos de k varían de 0.67 a 0.9, lo que corresponde apro ximadamente a valores de d_0/E de 0.45 a 0.6, tal comose muestra en la tabla 7.9.

Tabla 7.8 Coeficiente $k=d_0/y_{\rm C}$ para el cálculo del tirante al inicio de la reja (Fig. 7.18) (ref. 68).

La tabla 7.9 muestra también valores típicos del coefciente k de las ecs. (7.41) y (7.47), así como la relación de energía específica al principio y final de lareja, en caso de captación parcial $(\mathbf{E}_0/\mathbf{E}_k)$.

El coeficiente C_d de descarga, que interviene en m, va ría considerablemente con x. Valores típicos para los casos analizados se presentan en la tabla 7.9. En gene ral C_d es mayor para rejas de malla perforada que para la de barras paralelas y para rejas horizontales que para rejas inclinadas. También aumenta con el tirante si la reja es de barras paralelas, pero disminuye si las barras son en dirección transversal al flujo principal.

Tabla 7.9. Valores experimentales de algunos coeficien tes para el flujo sobre rejas, según Mostkow (ref. 31).

Tipo de reja	Inclinación	C _v	dô/Eo	k .	E _O /E _l	- C _d _
Tipo de barras paralelas	Horizontal Pendiente 1:5		0.509 0.449	0.850 0.615	0.640 0.609	0.497 0.435
De malla perfora	horizontal Pendiente 1:5		0.594 0.496		0.815	0.800 0.750

Según Zamarin (ref. 69), el gasto captado por un reja como en la-Fig. $7.20\,$ se obtiene de la ecuación.

$$c = C \in \text{bl} \sqrt{2g y_m}$$
 (7.50)

 $y_{\rm C}$), siendo $y_{\rm C}$ el tirante crítico en la sección inicial y $y_{\rm C}$ el de la sección final. En este caso, C - vale 0.60 cuando h/a > 4 y 0.5 cuando h/a < 4; siendô h el peralte de las barras y a el claro libre entre lasmismas. Esta ecuación vale para tan 0 < 0.2 y tambiénpara rejas de malla, si en lugar de a se utiliza el diâmetro de las perforaciones. $C = (C_O - 0.15 \tan \theta) y y_m = 0.41(y_{CO} +$ Q. donde:

una reja de barras paralelas, necesaria para la captación total del gasto, con la diferencia que $E_0=\frac{3}{2}$ yco y que el coeficiente m se calcula como sigue: que la ec. (7.43) para el cálculo de la longitud L'de-Frank (ref. 68) obtuvo una ecuación experimental igual

$$1 = \frac{2}{3} \sqrt{\frac{2}{3}} k (1 - f) c \mu$$
 (7.51)

un coeficien e S U . & . tabla la donde k se obtiene de te que vale:

$$c = 0.6 \frac{a}{a+e} \cos^{3/2}\theta$$
 (7.52)

y μ un coeficiente que depende de la forma de la sección transversal de las barras, como lo indica la Fig.

Substituyendo la ec. (7.52) en la (7.51), se obtiene

$$m = 0.3266 \sqrt{\kappa} \mu \epsilon \cos^{3/2} \theta (7.53)$$

Esto significa que:

$$C_{d} = 0.3266 \sqrt{K} \mu \cos^{1/2} \theta (7.54)$$

Esta ecuación proporciona valores poco menores que los de la ec. (7.50) y aproximadamente de la mitad de los-

7.9 dados por la tabla De las ecs. (7.38) y (7, 44) puede determinarse el decremento ΔQ del gasto a usar en la solución numérica.

$$\Delta Q = \varepsilon$$
 $C_{d} \cos \theta$ b $\sqrt{2g E_{O}} \Delta x (7.55)$

$$\Delta Q = \varepsilon \quad C_{d} \cos \theta \quad b \quad \sqrt{2g} \quad d_{m} \quad \Delta x \quad (7.56)$$

el tirante medio entre dos secciones sepaes el tirante medio entre distancia Δx (Fig. 7.21) donde y_m e radas la c

Las ecs. (7.21) y (/.22, 2... En la ec. (/.22, (d_2-d_1) cos θ en lugar de (y_2-y_1) . En la ec. (/.22, Δy sigue representando el desnivel de la superficie libre del agua entre las dos secciones separadas la distancia Δx .

Ejemplo 7.7. Una reja está formada de barras parale las de sección rectangular, espesor e = 20 mm, peralte h = 80 mm y claro libre entre ellas a = 40 mm. La reja está montada sobre un vertedor de tipo tirolés a fin de captar el total del caudal de un torrente, cuan do éste sea de magnitud q = 0.92 m $^3/s/m$ (por unidad de ancho en dirección perpendicular al flujo). Conside rando que la reja llega a obturarse hasta 25 por ciento, determinar la longitud L que necesita la reja y el comportamiento del flujo cuando el gasto en el río aupara los siguientes casos: a) reja horizontal; b) reja con inclinación: menta hasta el máximo de 10 m3/s/m $\tan \theta = 1/5$ (sen $\theta = 0.19612$, $\cos \theta$

El coeficiente evale: Solución a.

$$\varepsilon = (1 - 0.25) \frac{40}{40 + 20} = 0.5$$

con b = 1 m y $C_{\rm v}$ = 1.55, de la ec. (7.49) la energía específica al inicio de la reja es:

$$E_{O} = \frac{2/3}{1.55} = 0.7063 \text{ m}$$

댜 e] Utilizando el método de Mostkow, de la tabla 7.9 rante al inicio de la reja resulta:

 $y_0 = 0.509 \times 0.7063 = 0.3595 \text{ m}$

y también con $C_d = 0.497$ de la misma tabla, se tiene que: $m = 0.5 \times 0.497 = 0.2485$. De la ec. (7.43) es:

$$L = \frac{0.92}{0.2485 \sqrt{2g \times 0.7063}} = 0.9945 \text{ m}$$

También de la tabla, k = 0.85 y de la ec. (7.42):

$$L = \frac{0.7063x0.509}{0.2485} \quad \sqrt{1 - 0.85x0.509} = 1.0897 \text{ m}$$

La desviación respecto del valor anterior es:

Conviene considerar que la longitud de reja sea L = 1.10 m

Cuando el caudal en el río aumenta y se mantiene la longitud de reja ℓ = 1.10 m, de las ecs. (7.38) y (7.49)-el gasta captado es:

$$q_{_{\rm P}} \; = \; m \; \sqrt{2g} \; \; \ell \sqrt{E_{_{\rm O}}} \; = \; m \; \sqrt{2g} \; \; \; \ell \qquad \sqrt[3]{Q_{_{\rm O}}/\ C_{_{\rm V}}} \label{eq:qp}$$

Substituyendo: m = 0.2485, ℓ = 1.10 m y C_V = 1.55, la - ecuación que relaciona el gasto captado por la reja y- el total en el río es:

$$q_r = 1.0462 \sqrt[3]{q_0}$$

y de la ec. (7.49) resulta que:

$$E_{O} = (q_{O}/1.55)^{2/3} = 0.7466 q_{O}^{2/3}$$

También:

$$y_{o} = 0.509 E_{o} = 0.38 q_{o}^{2/3}$$
 $V_{o} = \frac{q_{o}}{y_{o}}$

Con estas cuatro últimas ecuaciones se obtuvo la tabla- 7.10.

Tabla 7.10 Cálculo de diferentes caracterísitcas en el Ejemplo 7.8 caso a al variar el caudal del río y para &=1.10~m.

5.6690	1.7640	3.4656	0.2254	2.2540	10.00
5.1506	1.1112	2.1832	0.3578	1.7890 2.0479	5.00 7.50
3.3152	0.6033	1.1852 1.5531	0.6591	1.3182 1.5089	3.00
2.6915	0.3976 0.4980	0.7811 0.9783	1.000	1.0701	1.0701
m/s	Ħ	m	1	m ³ /s/m	m3/s/m
٥<	٧ ٢	o ^E	q_r/q_o	1 2	o P

Para determinar el perfil de flujo, $q_0=3$ m3/s/m y - $E_0=1.5531$ m, $y_0=d_0=0.7905$ m. Substituyendo en - la ec. (7.41), resulta que:

$$x = \frac{1}{0.2485} \quad (0.7905 \quad \sqrt{1 - 0.85} \frac{0.7905}{1.5531} - d\sqrt{1 - 0.85} \frac{d}{1.5531})$$

$$x = \frac{1}{0.2485} \quad (0.5954 - d\sqrt{1 - 0.5473} d)$$

El perfil es como muestra la tabla 7.11.

Tabla 7.11 Perfil de flujo en el ejemplo 2.8 caso a.

Utilizando la fórmula de Zamarín (ec. 7.50), con C_0 = 0.65 ξ = 0.5, θ = 0, y_{CO} = 3 $\sqrt{(0.92)^2/9.81}$ = 0.4419 m y y_{CR} = 0, la longitud necesaria de reja es L = 1.5015 m.

Con & = 1,10 m y para $q_{\rm o}$ = 10 m³/s/m, la misma fórmula y después de varios tanteos resulta que: $q_{\it k}$ = 7.9642 y $q_{\rm r}$ = 2.0358 m³/s/m.

Utilizando ahora el método de Frank, de la tabla 7.8:-- κ = 1. De la Fig. 7.22: μ = 0.65 y de la ec. (7.53) - μ = 0.10614. Siendo que y_{CO} = 0.4419 m y E_O = $\frac{3}{2}$ x 0.4419 = 0.6628 m y de la ec. (7.43) se obtiene que: L^2 = 2.4035 m, que es bastante mayor que la de Mostkow.

Solución b. Con ϵ = 0.5 , b = 1m, C_V = 1.55, E_O = 0.7063 m y de la tabla 7.9: yo = 0.449x0.7063 = 0.3171 m, k = 0.615, - - C_d = 0.435; siendo el tirante do = 0.3171 x 0.98059 = 0.3110 m y m = 0.43x0.5x0.98058 = 0.2133. De la ec. - (7.42) resulta que:

$$L = \frac{0.3110}{0.2133} \sqrt{1 - 0.615 \frac{0.3110}{0.7063}} = 1.2451 \text{ m}$$

de la ec. (7.43) es:

$$L = \frac{0.92}{0.2133 / 2g \times 0.70631} = 1.1587 \text{ m}$$

con una desviación de - 6.9 por ciento del valor anterior. Se utiliza el valor màximo L = 1.25 m. Esto im plica que la inclinación en la reja aumenta la longitud. De la ec. (7.38) se tiene que:

$$q_{r} = 1.02037 \quad q_{o}^{y_3}$$

siendo ahora que: $d_o=0.449~\mathrm{x}~0.98059~\mathrm{E}_O=0.44028~\mathrm{E}_O$. La tabla 7.12 presenta la relación de gastos en el río y captados por la reja de 1.25 m, equivalente a la tabla 7.9.

Tabla 7.12 Cálculo de diferentes características en el ejemplo 7.8 caso b, al variar el caudal del río, con - ℓ = 1.25 m.

>°	s/w	3.0728	3.4822	3.8327	4.1286	4.3873	5.2017	5.9545	6.5538	
o o	ш	0.3354	0.4308	0.5218	0.6055	0.6838	0.9612	1.2595	1.5258	
E O	ш	0.7618	0.9784	1.1852	1.3753	1.5531	2.1832	2.8608	3.4656	
$q_{ m r}/\dot{q}_{ m O}$			0.7787	0.6428	0.5539	0.4905	0.3490	0.2663	0.2198	
q.	m ³ /s/m	1.0307	1.1680	1.2856	1.3849	1.4716	1.7448	1.9973	2.1983	
С _р	m ³ /s/m	1.0307	1.50	2.00	2.50	3.00	5.00	7.50	10.00	
	q_r q_r/q_o E_o d_o	$q_{\rm r}$ $q_{\rm r}/q_{\rm o}$ $E_{\rm o}$ $d_{\rm o}$ $m^3/s/m$ m	$q_{\rm r}$ $q_{\rm r}/q_{\rm o}$ $E_{\rm o}$ $d_{\rm o}$ m m 1.0307 1 0.7618 0.3354	f_{o} f_{r} f_{r}/f_{o} f_{o}	1 _o q _r q _r /q _o E _o d _o s/m m ³ /s/m m 7 7 1.0307 1 0.7618 0.3354 1.1680 0.7787 0.9784 0.4308 1.2856 0.6428 1.1852 0.5218	Io q_r q_r/q_o E_o d_o s/m $m^3/s/m$ m m D7 1.0307 1 0.77618 0.3354 1.1680 0.7787 0.9784 0.4308 1.2856 0.6428 1.1852 0.5218 1.3849 0.5539 1.3753 0.6055	10 q_r/q_o E_o d_o s/m $m^3/s/m$ m m 37 1.0307 1 0.7618 0.3354 17 0.7787 0.9784 0.4308 1.2856 0.6428 1.1852 0.5218 1.3849 0.5539 1.3753 0.6055 1.4716 0.4905 1.5531 0.6838	10 q_r q_r/q_o E_o d_o s/m $m^3/s/m$ m m $3/s/m$ 1.0307 1 0.7618 0.3354 $3/s/m$ 1.1680 0.7787 0.9784 0.4308 $3/s/m$	40 qr qr/qo Eo do s/m m³/s/m m m 07 1.0307 1 0.7618 0.3354 1.1680 0.7787 0.9784 0.4308 1.2856 0.6428 1.1852 0.5218 1.3849 0.5539 1.3753 0.6055 1.4716 0.4905 1.5531 0.6838 1.7448 0.3490 2.1832 0.9612 1.9973 0.2663 2.8608 1.2595	40 qr qr/q0 Eo do s/m m³/s/m m m 07 1.0307 1 0.7618 0.3354 1.1680 0.7787 0.9784 0.4308 1.2856 0.6428 1.1852 0.5218 1.3849 0.5539 1.3753 0.6055 1.4716 0.4905 1.5531 0.6838 1.7448 0.3490 2.1832 0.9612 1.9973 0.2663 2.8608 1.2595 2.1983 0.2198 3.4656 1.5258

Para determinar el perfil de flujo $q_0=3~m^3/s/m$, para el cual $E_0=1.5531~m$, $d_0=0.6838~m$. Substituyendo – en la ec. (7.41) resulta:

$$x = \frac{1}{0.2133} \quad (0.6838 \sqrt{1 - 0.615 \frac{0.6838}{1.5531}} - d \sqrt{1 - 0.615 \frac{d}{1.5531}})$$

$$x = \frac{1}{0.2133} \quad (0.5839 - d \sqrt{1 - 0.396 d})$$

El perfil se muestra en la tabla 7.13.

Tabla 7.13 Perfil de flujo en el ejemplo 7.8, caso

0.3412	1.2501
0.40	1.0173
0.50	0.6384
09.0	0.2815
0.65	0.1115
0.6838	0
d (m)	(m) ×
Ð	×

Ejemplo 7.8. Considerar que la reja del ejemplo 7.7 – está constituída por una malla con perforaciones de ma nera que permanece $\epsilon=0.5$, y se encuentra en posición horizontal, captando el gasto mínimo de 0.92 m³/s/m. Calcular la longitud necesaria y el comportamiento del flujo cuando el gasto en el río aumenta a 3 m³/s/m.

Solución. Con b = 1 m y $C_v = 1.55$, de la ec. (7.49) y la tabla 7.9 la energía específica y el tirante al inicio de la reja valen:

$$E_{O} = \left(\frac{0.92}{1.634}\right)^{2/3} = 0.6819 \text{ m}$$

$$d_0 = y_0 = 0.594x0.6819 = 0.4050 m$$

También k = 0.97 con C_d = 0.8, m = 0.5 x 0.8 = 0.4. — De la ec. (7.48) resulta entonces que: L = 2.06 m. Es te valor es prácticamente el doble del obtenido para la reja de barras paralelas y rebasa la longitud recomendable de 1.25 m por razones estructurales. En este ca so sería conveniente aumentar la longitud de cresta del vertedor o bien resolver el problema de diseño estructural de las rejas mediante una estructura más pesada y costosa.

A via de ejemplo, continuaremos el resto de los cálculos utilizando la longitud de reja de 2.06 m obtenida. Para esta longitud, si el caudal en el río aumenta a - 3 m 3 /s, el gasto captado puede calcularse de la ec. (7.37) obteniendo previamente d $_{\rm g}$ de la ec. (7.47). En efecto, con d $_{\rm g}$ = 0.1705 m se satisface que x = 2.06 m-en la ec. (7.47) y con ello ${\rm Qr}$ = 2.1681 m 3 /s.

REFERENCIAS

- 1. M. Schmidt: Gerinnehidraulik; Bauverlag GMBH, Wiesbaden (1957).
- 2. Ven te Chow: Open Channel Hydraulics; Mc Graw Hill-Kogakusha, Nueva York (1959).
- 3. G. H. Keulegan: Laws of Turbulent Flow in Open Channels; Journal of the National Bureau of Standars, Washington D.C., Research Paper 1151, Vol. 21, (Dic. 1938).
- 4. Zchiesche, Meissner y Blaur Kritik der Abflussformeln; - - Forschungsanstalt für Schiffahrt, Wasser-und Grundbau, Berlin (1952).
- 5. Y.S. Yu, J. S. McNown: Runoff from impervious surfaces; Journal of --Hydraulic Research Vol. 2, International Asociation for Hydraulic --Research, Delft (1964).
- 6. Report ASCE Task Force on Friction Factors in Open Channels; Proceedings of the A.S.C.E. Vol. 89, No H Y 2 (Marzo 1963), pag. 67.
- 7. H.J. Tracy y C. M. Lester: Resistance coefficients and velocity - Distribution-Smooth Rectangular Channel; Water-Supply Paper No. 1592-A Geological Survey, U.S. Dept. of the Interior, Washington (1961).
- 8. E. O. Macagno: Resistance to flow in Channels of Large Aspect Ratio; Journal of Hydraulic Research, Delft Vol. 3, No. 2 (1965).
- 9. C. C. Shih, N. S. Grigg: A Reconsideration of the Hydraulic Radius as a geometrical quantity in Open-Channel Hydraulics; XII Congreso de la IAHR, Paper B-36, (Septiembre 1967).
- Unger: Berechnnung instationärer Abflüsse in natürlichen Gerinne unter Verwendung eines von der Querschnittsform unabhangigen Rauhigkeitsmasses; T.H. Darmstadt, (1967) H. 3.
- 11. N. Narayana P.: On uniform flow trough smooth rectangular Open-Channels, Journal of Hydraulic Research, IAHR, Vol. 8 No. 4, Delft (1970).
- 12. E. Blau: Beitrag zur Frage einer einheitlichen Geschwindigkeitsformel; Mitteilungen der Forschungsanstalt für Schiffahrt Wasser-und Grundbau, Berlín (1969).
- 13. F. M. Henderson: Open Channel Flow; the Mc Millan Co., Nueva York (1966).

- . 2 .
- J. Williamson: The Laws of flow in rough pipes; La Houille Blanche, Vol. 6, No. 5 (Sept, Oct. 1951).
- 15. J. Kozeny: Hydraulik; Springer Verlag, Viena (1953).
- 16. CFE: Manual de diseño de obras civiles; HIDROTECNIA; A.2.11. Hidráuli-ca Fluvial, Comisión Federal de Electricidad, Máxico (1981).
- 17. G. Sotelo y E. Kodríguez: Salto Hidráulico en canales de sección geomé trica sencilla; Revista Ingeniería No. 1 Vol. XI, pags. 1 a 16, México, enero 1970.
- 18. A.J. Peterka: The Hydraulika Design of Stilling Basins and Energy --Dissipators; U.S. Departament of the Interior, Bureau of Reclamation,-Engineering Monograph No. 25, Washington (1964).
- 19. J. Smetana: Hydraulika, Vol. 2; Nakladatelství Geskoslovenskě -Akademie VED, Praga (1957).
- 20. Woycicki: Wassersprüng, Deckwalze und Ausfluss unter einer Schütze; -- Varsovia (1931).
- 21. U.S. Department of the Interior, Bureau of Reclamation: Design of small Dams; United States Government Printing Office, Segunda edición --- Washington (1974).
- 22. L. Macha: Untersuchungen über die Wirksamkeit von Tosbecken;Mitelungen der Institut für Wasserbau und Wirtschaft, Technische Universität Berlín, No. 61, (1963).
- Safranez: Untersuchungen über den Wechselsprung; Der Bauingenieur, No. 37,38 (1929).
- 24. F.J. Domínguez: Hidráulica; Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Editorial Universitaria, 4a, Edición (1974).
- 25. G. Sotelo: Cálculo de tanques de amortiguación de sección trapecial; --Revista Ingeniería Hidráulica en México, No. 1, Vol. XV, México, Enero de 1961
- 26. B.A. Bakhmeteff: Hydraulics of Open Channels; Mc Graw Hill Book Comp.-Inc., Nueva York (1932),

27. H. Rouse: Engineering Hydraulics; John Wiley & Sons, Inc., Nueva York-(1950).

w

- 28. R. Rössert: Hydraulik im Wasserbau; R. Oldenbourg Verlag, Munich (1964).
- 29. Water Measurement Manual; U.S. Department of the Interior, Bureau of Reclamation, 2a. Edición (1967).
- G. Formica: Esperienze preliminari sulle perdite di carico nei canalidovute a cambiamenti di sezione; L'Energia elletrica, Milán, vol. 32,-No. 7 (Julio 1955) pág. 554.
- 31. M.A. Mostkow: Handbuch der Hydraulik; VEB Verlag Technik, Berlín (1956).
- 32. P.G. Kisieliev: Manual de Cálculos Hidráulicos; GEIL, Moscú (1961).
- 33. H. Press: Stauanlagen und Wasserkraftwerke Vol. III, Wasserkraftwerke; 2a. Ed., Wilhelm Ernst & Son, Berlín Munich (1965).
- 34. A.T. Ippen y D.R.F. Harleman: Verificacion of theory for oblique - standing waves; Transactions American Society of Civil Engineering, -- Vol. 121, pag. 678-694, (1956).
- 35. A.T. Ippen y H.J. Dawson: Design of Channel Contractions; Proceedings-A.S.C.E., Noviembre (1949).
- 36. F.A. Engelund y J. Mufich Petersen: Steady Flow in contracted and - expanded rectangular Channels; La Houille Blanche, vol. 8, No. 4 - Agosto, Septiembre de 1953, pag. 464, París.
- 37. H. Rouse, B.V. Bhoota, E.Y. Hsu: Design of Channel Expansions; - Proceedings A.S.C.E., Noviembre (1949).
- 38. H. Press y R. Schröder: Hydromechanik im Wasserbau; Ed. Wilhelm Ernst-& Sohn, Berlín - Munich (1966).
- 39. R.P. Apmann: Flow Processes in Open Channel Bends; Journal of the Hydraulics Division, Proc. A.S.C.E., Mayo (1972).
- 40. H. Wittmann y P. Böss: Wasser- und Geschiebebewegung in gekrümmten -- Flusstrecken; Springer Verlag, Berlin, (1938).

- 41. A. Shukry: Flow around bends in an open flume; Transactions A.S.C.E. Vol. 115,-págs: 751-779 (1950).
- 42. C.E. Mockmore: Flow Round Bends in Stable Channels; transactions A.S.C.E., Vol. 109, pág. 593 (1944).
- 44. R.T. Knapp y A.T. Ippen: Curvilinear flow of liquids with free surfaces at ---velocities above that of wave propagation; Proceedings of the 5th InternationalCongress of Aplied Mechanics, Cambridge, Mass., John Wiley & Sons, Inc. Nueva--York, pp 531-536 (1938).
- 45. R.T. Knapp: Design of channel curves for supercritical flow; Transactions ----A.S.C.E., Vol. 116, pag 296-325 (1951).
- 46. J. Weisbach: Die Experimental Hydraulik; Freiburg, Alemania (1855).
- 47. J.F. d'Aubuisson de Voisins: Traité d'hydraulique; 2a. Ed., Pitois, Levrant &-Cie, París (1840).
- 48. F.A. Nagler Obstruction of bridge pier to the flow of water; Transaction A.S.C.E. Vol. 82, pags. 334-395 (1918).
- 49. D.L. Yarnell: Bridge pier as channel obstructions; U.S. Department of Agriculture Technnical Bulletin No. 442, Noviembre (1934).
- 50. Th. Rehbock; Verfähren zur Bestimmung des Brückenstabes bei rein strömendem Wasserdurchfluss; Der Bauingenieur (1921)
- 51. Reh: Vereinfachte Anwendung der Rehbock'shen Brückenstauformel; Die Wasserwir--tschaft, H. 9 (1958).
- 52. F.J. Mock: Strömungsvorgänge und Energieverluste in Verzweigungen von - - Rechteckgerinnen; Mitteilungen der Institut fur Wasserbau und Wirtschaft, ----- Technische Universitat Berlín, No. 52 (1960).
- 53 E.H. Taylor: Flow characteristics at rectargular open-channel junctions; ----Transactions American Society of Civil Enginners, Vol. 109, pags. 893-903 (1944).

- 54. W.H. Hager: Open Channel Hydraulics of flows with increasing - - discharge; Journal of Hydraulic Research de IAHR, Vol. 21 No. 3,- pags. 177 193 (1983).
- Wen-Hsiung Li: Open Channels with nonuniform discharge; Transactionsof the American Society of Civil Engineers, Vol. 120, pags 255-274 (1955).
- 56. G.H. Keulegan: Determination of critical depth in spatially variable-flow; Proceedings of the 2d. Midwestern Conference of Fluid Mechanics, The Ohio State University, Engineering Experiment Station. Boletín 149, Septiembre (1952) pags. 67-80.
- 57. K.H. Bleij: Flow in Roof Gutters; Journal Research del U.S. National-Bureau of Standards, Vol. 12 pags. 193 (1934).
- J. Hinds: Side Channel Spillways: Hydraulic Theory, economic factors and experimental determination of losses; Transactions ASCE, Vol. 89– (1926).
- G.S. Coleman y D. Smith: the Discharging Capacity ot side weirs; Proceedings of the Institution of Civil Engineers, Vol. 6 pag. 305, Londres (1957).
- 60. R. Ehrenberger: Streichwehre. Österreichische Wasserwirtshaft, - Viena (1934).
- 61. G. de Marchi: Saggio di teoría del funzionamento degli stramassi -- laterali; L'Energía Elletrica, Milán, Vol. II No. 11, pag. 849 -- Noviembre (1934).
- 62. O.Streck: Grund und Wasserbau in praktischen Beispielen. 2°tomo. Springer-Verlag, Berlín (1950).
- C. Zchiesche: Die Berechnung von Streichwehren auf Grund von Modell-versuchen mit geraden und schraggestellten Streichwehren; Forschungsanstalt für Schiffahrt, Wasser-und Grundbau, Akademie Verlag, Berlin (1957)
- 64. V.D. Coolinge: The Discharge Capacity of side weirs. Proceedings, Institution of Civil Engineers, Londres, Vol. 6 No. 2 (1957).
- 65. W. Frazer: The behaviour of side weirs in prismatic rectangular -- channels; Proceedings of the Institution of Civil Engineers, Vol. 6 pag. 305, Londres (1957).
- 66. K. Subramanya y S.C. Awasthy: Spatially Varied Flow Over Side Weirs,-J. Hydraulics Division, ASCE, Vol. 98, No. HYI (1972).
- 67. P. Ackers: A theoretical consideration of side weirs as stormwater -overflows; Proceedins Institution of Civil Engineers, Vol. 6, pag. --250, Londres (1957).

- 68. J. Frank: Hydraulische Untersuchungen für das tiroler Wehr. Der Bauingenieur, H. 3, pags. 96 101 (1956).
- 69. E.A. Zamarin, K.W. Popow, W.W. Fandejew: Wasserbau. VEB Verlag für Bauwesen, Berlín (1961).

1

70. F. Sassoli:Canali collettori laterali a forte pendeza. L'Energia Electrica, Vol. 36 pags. 26-39 (1971).

•

		•	
	•		
			•
			•
			•
			•
•			
			4

Esta obra se terminó de imprimir en mayo de 1997 en el taller de imprenta del Departamento de Publicaciones de la Facultad de Ingeniería, Ciudad Universitaria, México, D.F.

Secretaría de Servicios Académicos

El tiraje consta de 500 ejemplares más sobrantes de reposición. .